[1] |
高铁锁, 江涛, 傅杨奥骁, 等. 不同尺度飞行器周围等离子体分布及电磁波传输效应[J]. 兵工学报, 2023, 44(6): 1809-1819.
doi: 10.12382/bgxb.2022.0174
|
|
GAO T S, JIANG T, FU Y A X, et al. Plasma distribution and its effect on electromagnetic wave transmission across vehicles of varying sizes[J]. Acta Armamentarii, 2023, 44(6): 1809-1819. (in Chinese)
doi: 10.12382/bgxb.2022.0174
|
[2] |
MALBURG L, MOONEN N, LEFERINK F. The changing electromagnetic environment onboard all-electric aircraft, an EMC perspective[C]//Proceedings of 2021 IEEE International Joint EMC/SI/PI and EMC Europe Symposium. Raleigh, NC, US:IEEE, 2021:845-850.
|
[3] |
MACNAMARA T, MCAULEY J. Handbook of antennas for EMC, second edition[M]. London, UK: Artech House, 2018.
|
[4] |
EMMANOUIL N T, PAVLOS I L, ZAHARIAS D Z, et al. Optimized planar elliptical dipole antenna for UWB EMC applications[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(4):1377-1384.
|
[5] |
LIN F H, QI Y H, FAN J, et al. 0.7-20GHz Dual-polarized bilateral tapered slotantenna for EMC measurement[J]. IEEE Transactions on Electromagnetic Compatibility, 2014, 56(6):1271-1275.
|
[6] |
GIBSON P J. The Vivaldi aerial[C]//Proceedings of the 1979 9th European Microwave Conference. Brighton, UK: IEEE, 2007:101-105.
|
[7] |
ZHU Y Z, LÜ S H, YANG H, et al. A miniaturized UWB Vivaldi dual-polarized antenna based on resistance loading[C]//Proceedings of the 2022 IEEE 10th Asia-Pacific Conference on Antennas and Propagation.Xiamen, China:IEEE, 2022: 1-2.
|
[8] |
GUO F, YANG L. A dual-polarized miniaturized Vivaldi antenna with resistance loading[C]//Proceedings of the 2019 International Symposium on Antennas and Propagation.Xi’an, China:IEEE, 2019: 1-2.
|
[9] |
LIU Y S, ZHOU W J, YANG S J, et al. A novel miniaturized Vivaldi antenna using tapered slot edge with resonant cavity structure for ultrawideband applications[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15:1881-1884.
|
[10] |
YIN Z F, HE G Q, YANG X X, et al. Miniaturized ultrawideband half-mode Vivaldi antenna based on mirror image theory[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(4): 695-699.
|
[11] |
DENG J Y, CAO R, SUN D Q, et al. Bandwidth enhancement of an antipodal Vivaldi antenna facilitated by double-ridged substrate-integrated waveguide[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(12): 8192-8196.
|
[12] |
SINGH M, PARIHAR M S. Gain Improvement of Vivaldi MIMO antenna with pattern diversity using bi-axial anisotropic metasurface for millimeter-wave band application[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22: 621-625.
|
[13] |
SHI X R, CAO Y F, HU Y G, et al. A high-gain antipodal Vivaldi antenna with director and metamaterial at 1-28 GHz[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20: 2432-2436.
|
[14] |
CHENG H Y, YANG H L, WU J, et al. Leaky-Vivaldi antenna covered with metasurface with leaky wave radiation and aperture radiation[J]. Optics Express, 2023, 31(11):17291.
doi: 10.1364/OE.489259
pmid: 37381467
|
[15] |
CICCHETTI R, CICCHETTI V, FARAONE A, et al. A compact high-gain wideband lens Vivaldi antenna for wireless communications and through-the-wall imaging[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(6):3177-3192.
|
[16] |
DZAGBLETEY P A, SHIM J Y, CHUNG J Y, et al. Quarter-wave balun fed Vivaldi antenna pair for V2X communication measurement[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(3):1957-1962.
|
[17] |
YUAN W T, HUANG J J, ZHANG X F, et al. Wideband pattern-reconfigurable antenna with switchable monopole and Vivaldi modes[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(1):199-203.
|
[18] |
PAN Y S, CHENG Y, DONG Y D. Dual-polarized directive ultrawideband antenna integrated with horn and Vivaldi array[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(1):48-52.
|
[19] |
GJB151B—2013.军用设备和分系统电磁发射和敏感度要求与测量[S]. 北京: 国防科学技术工业委员会, 2013.
|
|
GJB151B—2013.Electromagnetic emission and susceptibility requirements and measurements for military equipment and subsystems[S]. Beijing: The Commission of Science, Technology and Industry for National Defense, 2013. (in Chinese)
|
[20] |
GJB8815—2015.电磁兼容测试天线的天线系数校准规范[S]. 北京: 国防科学技术工业委员会, 2015.
|
|
GJB8815—2015.Specification for calibration of antennas used for EMC measurements[S]. Beijing: The Commission of Science, Technology and Industry for National Defense, 2015. (in Chinese)
|