| [10] |
XIAO Y C, WANG R S, FAN C Y, et al. Cook-off experiment on the JH-14C booster explosive with a shell and numerical simulation on its cook-off response[J]. Explosion and Shock Waves, 2023, 43(7): 072301. (in Chinese)
|
| [11] |
SEMINOV N N. Theories of combustion process[J]. Zeitschrift Fur Physikalische Chemie, 1928, 48: 571-582.
|
| [12] |
冯长根, 张蕊, 陈朗. RDX炸药热烤(Cook-off)实验及数值模拟[J]. 含能材料, 2004, 12(4): 193-198.
|
|
FENG C G, ZHANG R, CHEN L. The cook-off test and its numerical simulation of RDX[J]. Chinese Journal of Energetic Materials, 2004, 12(4): 193-198. (in Chinese)
|
| [13] |
王沛, 陈朗, 冯长根. 不同升温速率下炸药烤燃模拟计算分析[J]. 含能材料, 2009, 17(1): 46-49, 54.
|
|
WANG P, CHEN L, FENG C G. Numerical simulation of cook-off for explosive at different heating rates[J] Chinese Journal of Energetic Materials, 2009, 17(1): 46-49, 54. (in Chinese)
|
| [14] |
MCGUIRE R R, TARVER C M. Chemical-decomposition models for the thermal explosion of confined HMX, TATB, RDX, and TNT explosives:UCRL-84986[R]. Livermore, CA, US: Lawrence Livermore National Laboratory, 1981.
|
| [15] |
TARVER C M, KOERNER J G. Effects of endothermic binders on times to explosion of HMX- and TATB-based plastic bonded explosives[J]. Journal of Energetic Materials. 2007, 26(1): 1-28.
|
| [16] |
陈朗, 王沛, 冯长根. 考虑相变的炸药烤燃数值模拟计算[J]. 含能材料, 2009, 17(5): 568-573.
|
|
CHEN L, WANG P, FENG C G. Numerical simulation of cook-off about phase transition of explosive[J]. Chinese Journal of Energetic Materials, 2009, 17(5): 568-573. (in Chinese)
|
| [17] |
周捷, 智小琦, 刘子德, 等. 2,4-二硝基苯甲醚基熔铸炸药慢速烤燃过程传热特征分析[J]. 兵工学报, 2019, 40(6): 1154-1160.
doi: 10.3969/j.issn.1000-1093.2019.06.005
|
|
ZHOU J, ZHI X Q, LIU Z D, et al. Analysis of the heat transfer characteristics of DNAN-based melt-cast explosive in slow cook-off test[J]. Acta Armamentarii, 2019, 40(6): 1154-1160. (in Chinese)
doi: 10.3969/j.issn.1000-1093.2019.06.005
|
| [18] |
KOU Y F, CHEN L, LU J Y, et al. Assessing the thermal safety of solid propellant charges based on slow cook-off tests and numerical simulations[J]. Combustion and Flame, 2021, 228: 154-162.
|
| [19] |
GU J S, LI H B, ZHAO X Q, et al. Kinetic modeling of liquid phase RDX thermal decomposition process and its application in the slow cook-off test prediction[J]. Propellants, Explosives, Pyrotechnics, 2021, 46(6): 935-943.
|
| [20] |
NIE P S, JIN S H, KOU X Y, et al. Study on the effect of NTO on the performance of HMX-based aluminized cast-PBX[J]. Materials, 2022, 15(14): 4808.
|
| [21] |
郭伟, 张志新, 王端, 等. B/KNO3激光点火器装药参数与点火性能研究[J]. 火工品, 2023(1): 11-15.
|
|
GUO W, ZHANG Z X, WANG D, et al. Study on charge parameters and ignition performance of B/KNO3 laser igniter[J]. Initiators & Pyrotechnics, 2023(1): 11-15. (in Chinese)
|
| [22] |
寇永锋. 火炸药装药烤燃反应特征及热安全性研究[D]. 北京: 北京理工大学, 2022.
|
|
KOU Y F. Research on the reaction characteristics and thermal safety of explosives and gunpowders charge under cook-off[D]. Beijing: Beijing Institute of Technology, 2022. (in Chinese)
|
| [1] |
李晨阳, 文坤, 安崇伟, 等. 黏结剂对B/KNO3微笔直写样品成型效果及燃烧性能的影响[J]. 含能材料, 2022, 30(4): 332-340.
|
|
LI C Y, WEN K, AN C W, et al. Effect of binder on formability and combustion performance of B/KNO3 samples by direct ink writing[J]. Chinese Journal of Energetic Materials, 2022, 30(4): 332-340. (in Chinese)
|
| [2] |
寇永锋, 陈朗, 马欣, 等. 黑索今基含铝炸药烤燃实验和数值模拟[J]. 兵工学报, 2019, 40(5): 978-989.
doi: 10.3969/j.issn.1000-1093.2019.05.010
|
|
KOU Y F, CHEN L, MA X, et al. Cook-off experimental and numerical simulation of RDX-based aluminized explosives[J]. Acta Armamentarii, 2019, 40(5): 978-989. (in Chinese)
doi: 10.3969/j.issn.1000-1093.2019.05.010
|
| [3] |
ZINN J, MADER C L. Thermal initiation of explosives[J]. Journal of Applied Physics, 1960, 31(2): 323-328.
|
| [4] |
CATALANO E, MCGUIRE R, LEE E, et al. The thermal decomposition and reaction of confined explosives[C]//Proceedings of the Sixth Symposium (International) on Detonation. San Diego, CA, US: Office of Naval Research-Department of the Navy, 1976: 214-222.
|
| [5] |
DICKSON P M, ASAY B W, HENSON B F, et al. Measurement of phase change and thermal decomposition kinetics during cook-off of PBX 9501[C]//Proceedings of the Fourteenth Shock Compression of Condensed Matter. Snowbird, UT, US: American Institute of Physics, 2000: 505, 837-840.
|
| [6] |
RODUIT B, BORGEAT C, BERGER B, et al. Up-scaling of dsc data of high energetic materials[J]. Journal of Thermal Analysis and Calorimetry, 2006, 85(1): 195-202.
|
| [7] |
马欣, 陈朗. HMX基混合炸药烤燃特性及多步热反应计算[J]. 兵工学报, 2015, 36(增刊1): 334-342.
|
|
MA X, CHEN L. Research on cook-off characteristics and multistep thermal decomposition calculation of HMX-based explosive[J]. Acta Armamentarii, 2015, 36(S1): 334-342. (in Chinese)
|
| [8] |
程万里, 高鹏, 吕春玲, 等. RDX含量对改性双基推进剂热安全特性的影响[J]. 含能材料, 2023, 31(10):1026-1034.
|
|
CHENG W L, GAO P, LYU C L, et al. Effect of RDX content on thermal safety of modified double base propellant[J]. Chinese Journal of Energetic Materials, 2023, 31(10):1026-1034. (in Chinese)
|
| [9] |
郭伟, 贾路川, 王浩旭, 等. 加速老化PBX-6炸药的烤燃实验研究[J]. 火炸药学报, 2022, 45(3): 315-322.
doi: 10.14077/j.issn.1007-7812.202203040
|
|
GUO W, JIA L C, WANG H X, et al. Experimental research on cook-off test of accelerated aging PBX-6 explosive[J]. Chinese Journal of Explosives & Propellants, 2022, 45(3): 315-322. (in Chinese)
|
| [10] |
肖有才, 王瑞胜, 范晨阳, 等. 带壳JH-14C传爆药烤燃实验及响应特性数值模拟[J]. 爆炸与冲击, 2023, 43(7): 072301.
|