欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2024, Vol. 45 ›› Issue (2): 574-583.doi: 10.12382/bgxb.2022.0664

• • 上一篇    下一篇

基于多传感器数据关联的综合传动装置服役状态辨识方法

徐保荣1, 张金乐2, 万丽1,*(), 吴昊阳1, 王立勇3   

  1. 1 63966部队, 北京 100072
    2 中国北方车辆研究所 车辆传动重点实验室, 北京 100072
    3 北京信息科技大学 现代测控技术教育部重点实验室, 北京 100192
  • 收稿日期:2022-07-10 上线日期:2024-02-29
  • 通讯作者:
  • 基金资助:
    国家自然科学基金项目(52175074)

A Service Status Identification Method of Comprehensive Transmission Based on Multi-sensor Data Association

XU Baorong1, ZHANG Jinle2, WAN Li1,*(), WU Haoyang1, WANG Liyong3   

  1. 1 Unit 63966 of PLA, Beijing 100072, China
    2 Science and Technology on Vehicle Transmission Laboratory, China North Vehicle Research Institute, Beijing 100072, China
    3 Key Laboratory of Modern Measurement and Control Technology of Ministry of Education, Beijing Information Science and Technology University, Beijing 100192, China
  • Received:2022-07-10 Online:2024-02-29

摘要:

针对综合传动装置在恶劣环境下传感器数据跳变、可靠性差,导致依赖单一传感器信息带来的状态判断虚警率高、服役状态难以准确辨识的问题,提出一种基于多传感器数据关联的综合传动装置服役状态辨识方法。通过时间窗均值关联网络,充分考虑关联传感器数据在各时间段的关联程度,可以有效表征复杂工况下传感器数据的关联关系。在时间窗关联度计算方法的基础上进一步构造了误差反向传播(Back Propagation,BP)数据映射模型,完成对关键传感器数据的映射。采用变分模态分解和样本熵(Variational Mode Decomposition-Sample Entropy,VMD-SE)方法对数据进行预处理;利用所提方法计算各传感器数据间的关联性,选取出相关性高的数据;将相关性高的数据输入构造出的BP数据映射模型进行映射。油压数据的案例验证结果表明,时间窗关联度计算方法能准确地衡量传感器数据间的关联性,BP数据映射模型输出的数据能够良好地表征关键传感器数据,二者结合能够有效提升服役状态判断的准确性。

关键词: 综合传动, 状态辨识, 数据关联, 映射模型

Abstract:

The sensor data jumps and the poor reliability of comprehensive transmission in harsh environment lead to a high false alarm rate in the state judgment brought by relying on a single sensor information, and make it difficult to accurately identify the service state. A service status identification method of comprehensive transmission based on multi-sensor data association is proposed. The proposed method fully considers the correlation degree of associated sensor data in each time period through the time window mean correlation network, and can effectively characterize the correlation relationship of sensor data under complex working conditions. Based on the calculation method of time window correlation degree, a back propagation (BP) data mapping model is constructed to complete the mapping of key sensor data. First, the variational mode decomposition-sample entropy (VMD-SE) method is used to preprocess the data; the correlation between the sensor data is calculated by the proposed method, and the data with high correlation is selected; finally, the data with high correlation is input into the constructed BP data mapping models to map the key sensor data. The case verification of oil pressure data is carried out. The results show that the time window correlation calculation method can accurately measure the correlation between sensor data, and the data output by the BP data mapping model can well characterize the key sensor data. The combination of the two can effectively improve the accuracy of service status judgment.

Key words: comprehensive transmission, status identification, data association, mapping model

中图分类号: