[1] |
肖宇, 李英顺, 戴喜生, 等. 基于迁移学习的综合传动装置健康预测方法[J]. 兵工自动化, 2021, 40(10): 1-5, 9.
|
|
XIAO Y, Li Y S, DAI X S, et al. Health prediction method of comprehensive transmission based on transfer learning[J]. Ordnance Industry Automation, 2021, 40(10): 1-5, 9. (in Chinese)
|
[2] |
邹天刚, 闫清东, 盖江涛, 等. 基于扁平电机的轻混式履带车辆综合传动方案[J]. 兵工学报, 2021, 42(10): 2233-2241.
doi: 10.3969/j.issn.1000-1093.2021.10.019
|
|
ZOU T G, YAN Q D, GAI J T, et al. The scheme of lightweight Integrated mixing transmission based on flat motor for tracked vehicle[J]. Acta Armamentarii, 2021, 42(10): 2233-2241. (in Chinese)
doi: 10.3969/j.issn.1000-1093.2021.10.019
|
[3] |
闫书法, 马彪, 郑长松. 基于油液光谱分析的综合传动视情维护研究[J]. 光谱学与光谱分析, 2019, 39(11) : 3470-3474.
|
|
YAN S F, MA B, ZHENG C S. Optimized method for shift valve used in integrated transmission[J]. Spectroscopy and Spectral Analysis, 2019, 39(11): 3470-3474. (in Chinese)
|
[4] |
陈钢, 陈希祥. 综合传动装置状态监测与故障诊断系统研究[J]. 科学与信息化, 2021(8): 52.
|
|
CHEN G, CHEN X X. The study on state monitor and failure diagnosis of integrated transmission system[J]. Technology and informationi, 2021(8): 52. (in Chinese)
|
[5] |
郑长松, 冯毓庆, 汪宇, 等. 综合传动装置转速和温度传感器FMECA分析[J]. 车辆与动力技术, 2021(1): 55-59, 64.
|
|
ZHENG C S, FENG Y Q, WANG Y, et al. FMECA analysis of speed and temperature sensor in the comprehensive transmission[J]. Vehicle & Power Technology, 2021(1): 55-59, 64. (in Chinese)
|
[6] |
周锐, 蒋觉义, 乔丽. 综合传动装置一体化模型评价与验证研究[J]. 计算机测量与控制, 2020, 28(4): 246-250, 270.
|
|
ZHOU R, JIANG J Y, QIAO L. Research on iIntegrated model evaluation and verication of integrated transmission[J]. Computer Measurement & Control, 2020, 28(4): 246-250, 270. (in Chinese)
|
[7] |
闫书法, 马彪, 郑长松. 基于竞争失效的综合传动剩余寿命预测[J]. 汽车工程, 2019, 41(4): 426-431, 461.
|
|
YAN S F, MA B, ZHENG C S. Remaining useful life prediction of power-shift steering transmission based on competing failures[J]. Automotive Engineering, 2019, 41(4): 426-431, 461. (in Chinese)
|
[8] |
吴斌, 曲鹏, 甘辉. 基于虚拟余度的发动机伺服传感器故障检测[J]. 兵工自动化, 2021, 40(2): 25-28.
|
|
WU B, QU P, GAN H. Fault detection method for engine servo sensor based on virtual redundancy[J]. Ordnance Industry Automation, 2021, 40(2) :25-28. (in Chinese)
|
[9] |
闫静静, 王峥. 路灯节能调控系统矢量传感器误差修正方法[J]. 计算机仿真, 2021, 38(1): 256-260.
|
|
YAN J J, WANG Z. Error correction method of vector sensor in street lamp energy saving control system[J]. Computer Simulation, 2021, 38(1): 256-260. (in Chinese)
|
[10] |
吴耀春, 赵荣珍, 靳伍银, 等. 利用DCNN融合多传感器特征的故障诊断方法[J]. 振动、测试与诊断, 2021, 41(2) :362-369, 416.
|
|
WU Y C, ZHAO R Z, JIN W Y, et al. Mechanical fault diagnosis method based on multi-sensor signal feature fusion using deep cConvolutional neural network[J]. Journal of Vibration, Measurement & Diagnosis, 2021, 41(2): 362-369, 416. (in Chinese)
|
[11] |
隗寒冰, 白林. 基于多源异构信息融合的智能汽车目标检测算法[J]. 重庆交通大学学报(自然科学版), 2021, 40(8): 140-149.
|
|
HUAI H B, BAI L. Intelligent vehicle target detection algorithm based on multi-source heterogeneous information fusion[J]. Journal of Chong Qing Jiao Tong University(Natural Science), 2021, 40(8): 140-149. (in Chinese)
|
[12] |
李佳蔚, 崔涛, 刘宇航, 等. 基于排气温度动态模型的在线观测器研究[J]. 兵工学报, 2019, 40(8): 1562-1571.
doi: 10.3969/j.issn.1000-1093.2019.08.002
|
|
LI J W, CUI T, LIU Y H, et al. Construction for online observer based on exhaust gas temperature dynamic model[J]. Acta Armamentarii, 2019, 40(8): 1562-1571. (in Chinese)
doi: 10.3969/j.issn.1000-1093.2019.08.002
|
[13] |
路飞, 刘硕, 田国会. 智能机器人服务环境下传感数据映射及服务组合方法研究[J]. 机器人, 2019, 41(1): 30-39.
doi: 10.13973/j.cnki.robot.18055
|
|
LU F, LIU S, TIAN G H. Methods for sensor data mapping and automatic servicecomposition in intelligent robot service environment[J]. Robot, 2019, 41(1): 30-39. (in Chinese)
|
[14] |
乔成林, 单甘霖, 段修生, 等. 多平台主动与被动传感器协同跟踪的长时调度方法[J]. 兵工学报, 2019, 40(1): 115-123.
doi: 10.3969/j.issn.1000-1093.2019.01.014
|
|
QIAO C L, SHAN G L, DUAN X S, et al. Non-myopic scheduling algorithm of multi-platform active /passive sensors for collaboration tracking[J]. Acta Armamentarii, 2019, 40(1): 115-123. (in Chinese)
|
[15] |
王峻峰, 张玉帆, 邵瑶琪, 等. 面向生产性能数字孪生的仿真数据映射研究[J]. 系统仿真学报, 2021, 33(10): 2470-2477.
doi: 10.16182/j.issn1004731x.joss.20-0506
|
|
WANG J F, ZHANG Y F, SHAO Y Q, et al. Research on simulation data mapping for production performance digital twin[J]. Journal of System Simulation, 2021, 33(10): 2470-2477. (in Chinese)
doi: 10.16182/j.issn1004731x.joss.20-0506
|
[16] |
曾广迅, 龚光红, 李妮. 基于语义匹配的作战体系仿真想定生成方法[J]. 系统工程与电子技术, 2021, 43(8): 2154-2162.
doi: 10.12305/j.issn.1001-506X.2021.08.17
|
|
ZENG G X, GONG G H, LI N. Combat system of systems simulation scenario generation approach based on semantic matching[J]. Systems Engineering and Electronics, 2021, 43(8): 2154-2162. (in Chinese)
|
[17] |
文必洋, 汤文成, 田应伟. 基于BP神经网络的高频雷达有效浪高场反演[J]. 华中科技大学学报(自然科学版), 2021, 49(4): 114-119.
|
|
WEN B Y, TANG W C, TIAN Y W. Significant wave height field inversion of high frequency radar based on BP neural network[J]. Journal of Hua Zhong Universityof Science and Technology (Natural Science Edition), 2021, 49(4): 114-119. (in Chinese)
|
[18] |
SHEN Y F, ZHENG W, YIN W J, et al. Feature extraction algorithm using a correlation coefficient combined with the VMD and its application to the GPS and GRACE[J]. IEEE Access, 2021(9): 17507-17519.
|
[19] |
RAYI V K, MISHRA S P, NAIK J, et al. Adaptive VMD based optimized deep learning mixed kernel ELM autoencoder for single and multi-step wind power forecasting[J]. Energy, 2021(244): 122585.
|
[20] |
JIA S, MA B, GUO W, et al. A sample entropy based prognostics method for lithium-ion batteries using relevance vector machine[J]. Journal of Manufacturing Systems, 2021(6): 773-781.
|