欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2022, Vol. 43 ›› Issue (12): 3132-3141.doi: 10.12382/bgxb.2021.0714

• 论文 • 上一篇    下一篇

基于蚁群特征选择并行分类集成学习的孪生辐射源个体识别

徐雨芯1,2, 顾楚梅1,2, 曹建军2, 许金勇2, 魏志虎2   

  1. (1.南京信息工程大学 计算机与软件学院, 江苏 南京 210044; 2.国防科技大学第六十三研究所, 江苏 南京 210007)
  • 上线日期:2022-05-19
  • 作者简介:徐雨芯(1998—),女,硕士研究生。E-mail:2801343036@qq.com
  • 基金资助:
    国家自然科学基金项目(61371196);中国博士后科学基金特别资助项目(2015M582832);国家重大科技专项项目(2015ZX01040-201)

Specific Emitter Identification of Twin Radiation Sources Based on Parallel Classifier Ensemble Learning Using Ant ColonyFeature Selection

XU Yuxin1,2, GU Chumei1,2, CAO Jianjun2, XU Jinyong2, WEI Zhihu2   

  1. (1.College of Computer Science and Technology, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China; 2.The 63rd Research Institute, National University of Defense Technology, Nanjing 210007, Jiangsu, China)
  • Online:2022-05-19

摘要: 为提高辐射源个体识别的准确率和可靠性,定义并研究孪生辐射源个体识别问题,提出基于蚁群特征选择并行分类集成学习的孪生辐射源个体识别方法。用皮尔森相关系数法确定不同分类器输出结果的分布矩阵的差异性,以基于蚁群特征选择的并行分类器中各子分类器分类准确率最高、差异性最大并使输入特征子集规模最小为目标建立设计模型,结合模型特点设计求解模型的蚁群算法。各子分类器根据其与所有子分类器的差异度和可靠度确定权重,差异度和可靠度越大,所占权重越大,根据不同权重子分类器预测结果的加权和进行最终决策。为验证方法的优越性,在原始电台采集信号、添加10 dB噪声、添加5 dB噪声3组数据下,将新方法和单一分类器、Adaboost算法及随机森林算法进行实验对比。研究结果表明,所提并行分类器设计模型分类准确率分别为88.70%、76.70%、64.80%,提高了特征的利用率和分类的准确性,优于其余3种方法。

关键词: 特征选择, 支持向量机, 集成学习, 蚁群算法, 二分类问题

Abstract: To improve the accuracy and reliability of specific emitter identification, the twin specific emitter identification problem is defined and studied for the first time, and a twin specific emitter identification method based on parallel classification ensemble learning using ant colony feature selection is proposed. The difference between the distribution matrixes of the output results of different classifiers is determined using the Pearson correlation coefficient method. The design model is established for the highest classification accuracy, greatest difference between classifiers, and smallest size of input feature subsets of the parallel classifier based on ant colony feature selection. Meanwhile, combined with the characteristics of the parallel classifier, an ant colony algorithm is designed to solve the model. The weight of each sub-classifier is decided based on the degree of difference and reliability. The more different and reliable the sub-classifier is, the greater the weight will be, The final decision is derived from the weighted sum of classifiers with different weights. To verify the superiority of this method, the parallel classifier based on ant colony feature selection, single classifier, and Adaboost are compared using three groups of data, namely original radio station signals, data with 10 dB white Gaussian noise added, and data with and 5 dB white Gaussian noise added. The experimental results show that the classification accuracy of the proposed model is 88.70%, 76.70% and 64.80% respectively, all outperforming the traditional single classifier, Adaboost algorithm and Random Forest.

Key words: featureselection, supportvectormachine, ensemblelearning, antcolonyalgorithm, binaryclassification

中图分类号: