[1] 曹端林, 李雅津, 杜耀, 等. 熔铸炸药载体的研究评述 [J]. 含能材料, 2013, 21(2): 157-165. CAO D L, LI Y J, DU Y, et al. Review on carriers for melt-cast explosives[J]. Chinese Journal of Energetic Materials, 2013, 21(2): 157-165. (in Chinese) [2] 王红星, 王晓峰, 罗一鸣. 不敏感熔铸炸药的研究现状及发展趋势[J]. 爆破器材, 2021, 50(1): 1-9. WANG H X, WANG X F, LUO Y M. Research status and development trend of insensitive melt-cast explosive[J]. Explosive Materials, 2021, 50(1): 1-9. (in Chinese) [3] 陈朗, 李贝贝, 马欣. DNAN炸药烤燃特征[J]. 含能材料, 2016, 24(1): 27-32. CHEN L, LI B B, MA X. Research on the cook-off characteristics of DNAN explosive[J]. Chinese Journal of Energetic Materials, 2016, 24(1): 27-32. (in Chinese) [4] HENSON F B, ASAY W B, SMILOWITZ B L, et al. Ignition chemistry in HMX from thermal explosion to detonation[J]. AIP Conference Proceedings, 2002, 620(1): 1069-1073. [5] MCGUIRE R R, TARVER C M. Chemical-decomposition models for the thermal explosion of confined HMX, TATB, RDX, and TNT explosives [C]∥Proceedings of the 7th Symposium (International) on Detonation. Annapolis. MD, US: Naval Surface Weapons Center, 1981: 56-64. [6] PERRY W L, GUNDERSON J A, BALKEY M M, et al. Impact-induced friction ignition of an explosive: infrared observations and modeling[J]. Journal of Applied Physics, 2010, 108(8): 084902. [7] 马欣. 高能混合炸药热反应特征和规律研究[D]. 北京: 北京理工大学, 2014: 94-118. MA X. Study on thermal reaction characteristics and rules of high energy mixed explosives[D]. Beijing: Beijing Institute of Technology, 2014: 94-118. (in Chinese) [8] 马欣, 陈朗. HMX基混合炸药烤燃特性及多步热反应计算[J]. 兵工学报, 2015, 36(增刊1): 334-342. MA X, CHEN L. Research on cook-off characteristics and multi-step thermal decompostion calculation of HMX-based explosive[J]. Acta Armamentarii, 2015, 36(S1): 334-342. (in Chinese) [9] VOLLER V R, SWAMINATHAN C R. General source-based method for solidification phase change[J]. Numerical Heat Transfer, Part B: Fundamentals, 1991, 19(2): 175-189. [10] XING X L, ZHAO F Q, MA S N, et al. Specific heat capacity, thermal behavior, and thermal hazard of 2, 4-dinitroanisole[J]. Propellants, Explosives, Pyrotechnics, 2012, 37(2): 179-182. [11] 陈朗, 马欣. 熔铸混合炸药烤燃特征及热反应计算分析 [C]∥2014(第六届)含能材料与钝感弹药技术学术研讨会论文集. 四川, 成都: 中国工程物理研究院, 2014: 392-401. CHEN L, MA X. Cook-off characteristics and thermal response calculation analysis of melt-cast mixed explosive[C]∥Proceedings of the 6th Symposium on Energetic Materials and Insensitive Munitions. Chengdu, Sichuan: China Academy of Engineering Physics, 2014: 392-401. (in Chinese) [12] 冯长根. 热爆炸理论[M]. 北京: 科学出版社, 1988:108. FENG C G. Thermal explosion theory[M]. Beijing: Science Press, 1988: 108. (in Chinese) [13] 王福军. 计算流体动力学分析[M]. 北京: 清华大学出版社, 2004: 204. WANG F J. Computational fluid dynamics analysis[M]. Beijing:Tsinghua University Press, 2004: 204. (in Chinese) [14] ANSYS Inc.. ANSYS FLUENT 14.0 User's Guide[M]. Canonsburg, PA, US: ANSYS, Inc., 2011, 10: 813-818. [15] HOBBS M L, KANESHIGE M J, ERIKSON W W, et al. Gas retention in an HMX-based explosive (LX-14)[J]. Science and Technology of Energetic Materials, 2018, 79(2): 35-42. [16] LI S R, DUAN Z P, GAO T Y, et al. Size effect of explosive particle on shock initiation of aluminized 2,4-dinitroanisole (DNAN)-based melt-cast explosive[J]. Journal of Applied Physics, 2020, 128(12): 125903.
|