[1] 陈昌孝, 何明浩, 徐璟,等. 雷达辐射源识别技术研究进展[J]. 空军预警学院学报, 2014, 28(1):1-5,9. CHEN Chang-xiao, HE Ming-hao, XU Jing, et al. Progress of study on recognition technology of radar emitter [J]. Journal of Air Force Early Warning Academy, 2014, 28(1):1-5,9. (in Chinese) [2] 周志文, 黄高明, 陈海洋,等. 雷达辐射源识别算法综述[J]. 电讯技术, 2017, 57(8):973-980. ZHOU Zhi-wen, HUANG Gao-ming, CHEN Hai-yang, et al. A review of radar emitter recognition algorithm[J]. Telecommunication Engineering, 2017, 57(8):973-980. (in Chinese) [3] 周志文, 黄高明, 高俊,等. 一种深度学习的雷达辐射源识别算法[J]. 西安电子科技大学学报, 2017, 44(3):77-82. ZHOU Zhi-wen, HUANG Gao-ming, GAO Jun, et al. Radar emitter identification algorithm based on deep learning[J]. Journal of Xidian University, 2017, 44(3):77-82. (in Chinese) [4] Kawalec A, Owczarek R. Specific emitter identification using intrapulse data[C]∥Proceedings of European Radar Conference. Amsterdam, the Netherlands: IEEE, 2004:249-252. [5] 王宏伟, 赵国庆, 王玉军. 基于脉冲包络前沿高阶矩特征的辐射源个体识别[J]. 现代雷达, 2010, 32(10):42-45. WANG Hong-wei, ZHAO Guo-qing, WANG Yu-jun. Specific emitter identification based on higher order moment of the envelope's front edge[J]. Modern Radar, 2010, 32(10):42-45. (in Chinese) [6] 程吉祥, 张葛祥, 李志丹. 基于时频原子方法的雷达辐射源个体识别[J]. 航天电子对抗, 2011, 27(1):54-57. CHENG Ji-xiang, ZHANG Ge-xiang, LI Zhi-dan. A novel specific emitter identification method based on time-frequency atom approach[J]. Aerospace Electronic Warfare, 2011, 27(1):54-57.(in Chinese) [7] Wang L, Ji H B, Shi Y. Feature extraction and optimization of representative-slice in ambiguity function for moving radar emitter recognition[C]∥Proceedings of IEEE International Conference on Acoustics Speech and Signal Processing. Dallas, TX, US: IEEE, 2010:2246-2249. [8] Schmidhuber J. Deep learning in neural networks: an overview[J]. Neural Network, 2014, 61(1):85-117. [9] 周志华. 机器学习[M]. 北京:清华大学出版社, 2016: 380-381. ZHOU Zhi-hua. Machine learning[M]. Beijing: Tsinghua University Press, 2016:380-381. (in Chinese)
[10] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]∥Proceedings of International Conference on Neural Information Processing Systems. Spain: Neural Information Processing Systems Foundation, 2012:1097-1105. [11] Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-541. [12] Bengio Y I, Goodfellow J, Courville A. Deep learning [M]. Cambridge, MA, US: MIT Press, 2016:340-341. [13] van Hasselt H, Guez A, Silver D. Deep reinforcement learning with double Q-learning[C]∥Proceedings of the 30th AAAI Conference on Artificial Intelligence. Phoenix, AZ, US: AAAI, 2016:2094-2100. [14] Wang Z, Schaul T, Hessel M, et al. Dueling network architectures for deep reinforcement learning[C]∥Proceedings of International Conference on Machine Learning. New York,NY, US: PMLR, 2016:1995-2003. [15] Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks[J]. Journal of Machine Learning Research, 2010, 9: 249-256.
第39卷第12期 2018 年12月兵工学报ACTA ARMAMENTARIIVol.39No.12Dec. 2018
|