欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (10): 250420-.doi: 10.12382/bgxb.2025.0420

• • 上一篇    下一篇

高分辨率捕捉强间断多介质流场的伪弧长方法

李坤, 马天宝*(), 王渊芃   

  1. 北京理工大学 爆炸科学与安全防护全国重点实验室, 北京 100081
  • 收稿日期:2025-05-28 上线日期:2025-11-05
  • 通讯作者:
  • 基金资助:
    国家自然科学基金项目(12272052)

Pseudo Arc-Length Method for High-Resolution Capturing of Strong Discontinuities in Multi-Medium Flows

LI Kun, MA Tianbao*(), WANG Yuanpeng   

  1. State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, China
  • Received:2025-05-28 Online:2025-11-05

摘要:

可压缩多介质气液两相流中,介质热力学差异导致界面区域呈现强非线性波系干涉,显著增加数值模拟难度。尤其在双曲型守恒律方程框架下,流场易形成激波、接触间断和稀疏波等奇异结构,对算法精度、间断捕捉能力及稳定性提出更高要求。为此,构建了一种面向多介质气液两相流场的高精度伪弧长方法,通过引入弧长参数将方程映射至正交弧长空间,缓解强间断导致的数值奇异性,并引入高阶重构格式保证解的精度。为精准刻画界面动力学行为,提出基于弧长空间的符号距离函数演化机制,并结合真实虚拟流体方法严格定义边界条件,确保界面物理量连续性。数值结果表明,该方法具备对强间断及复杂波系结构的高分辨率解析能力。

关键词: 多介质, 双曲型守恒律方程, 伪弧长方法, 非线性, 强间断

Abstract:

In compressible multi-medium gas-liquid two-phase flow, the thermodynamic disparities between different materials lead to strongly nonlinear wave interactions in the interfacial region, significantly increasing the difficulty of numerical simulation. Particularly within the framework of hyperbolic conservation law equation, the flow field is prone to form singular structures such as shock waves, contact discontinuities (CD), and rarefaction waves, which impose stricter requirements on the accuracy, discontinuity-capturing capability, and stability of numerical algorithms. To address these challenges, this paper develops a high-order pseudo arc-length method (PALM) tailored for multi-medium gas-liquid two-phase flow. By introducing an arc-length parameter, the governing equations are transformed into an orthogonal arc-length space, thereby alleviating numerical singularities induced by strong discontinuities. A high-order reconstruction scheme is incorporated to ensure solution accuracy. For the precise description of interfacial dynamics, an evolution mechanism for the signed distance function based on the arc-length space is proposed, combined with the real ghost fluid method to rigorously define boundary conditions and maintain the continuity of physical quantities across the interface. Numerical results demonstrate that the proposed method achieves high-resolution resolution of strong discontinuities and complex wave structures.

Key words: multi-medium, hyperbolic conservation law equation, pseudo arc-length method (PALM), nonlinear, strong discontinuities