欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (10): 250424-.doi: 10.12382/bgxb.2025.0424

• • 上一篇    下一篇

基于数据驱动的均匀脉冲载荷作用下低碳钢圆板动力学响应的量纲分析

葛朴昕1, 宋子豪1, 李志洋1, 王海任2, 雷建银1,3,*(), 刘志芳1   

  1. 1 太原理工大学 航空航天学院, 山西 太原 030024
    2 榆林学院 建筑工程学院, 陕西 榆林 719000
    3 中国辐射防护研究院 核应急与核安全研究所, 山西 太原 030024
  • 收稿日期:2025-05-29 上线日期:2025-11-05
  • 通讯作者:
  • 基金资助:
    国家自然科学基金项目(12372363); 国家自然科学基金项目(12272254); 国家自然科学基金项目(12302490)

Data-Driven Dimensional Analysis of the Dynamic Response of Low-Carbon Steel Circular Plates under Uniform Impulsive Loading

GE Puxin1, SONG Zihao1, LI Zhiyang1, WANG Hairen2, LEI Jianyin1,3,*(), LIU Zhifang1   

  1. 1 School of Aerospace Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
    2 School of Civil Engineering, Yulin University, Yulin 719000, Shaanxi, China
    3 Institute of Nuclear Emergency and Nuclear Safety, China Institute of Radiation Protection, Taiyuan, 030024, Shanxi, China
  • Received:2025-05-29 Online:2025-11-05

摘要:

在爆炸载荷作用下,预测结构响应的关键在于准确建立输入载荷、材料性能与力学响应之间的关系。提出了一种结合数据驱动和量纲不变性分析的方法,用于识别在脉冲载荷作用下圆板动态塑性响应中的关键无量纲参数,并构建挠度预测模型。通过在ABAQUS中建立固支圆板的显式动力学模型,设置圆板半径L、厚度H、密度ρ、屈服强度σ0及脉冲冲量I为变量生成数据;以人工神经网络拟合响应面并求梯度,结合指数矩阵法与主动子空间分析完成特征构造与降维,识别主导无量纲量。结果表明,通过指数矩阵耦合和主动子空间分析,最终将五个原始变量表示为Johnson损伤数I2/(ρσ0H2)与几何参数H/L的组合,将问题从多维输入降维至一个核心变量。识别的无量纲量能有效表征冲击损伤和动力响应,并展现出良好的适用性。研究成果为冲击动力学问题提供了一种高效的数据驱动分析工具,体现了机器学习在工程物理问题中可能的应用前景。

关键词: 脉冲载荷, 数据驱动, 量纲分析, 动态塑性响应, 有限元模拟

Abstract:

Under explosive loading, the key to predicting a structure’s response is to accurately establish the relationship among the input load, material properties, and mechanical response. This study proposes a method that combines data-driven modeling with dimensional-invariance analysis to identify the key dimensionless parameters governing the dynamic plastic response of circular plates under impulsive loading, and to build a deflection-prediction model. An explicit dynamic model of a clamped circular plate is constructed in ABAQUS. Data are generated by varying the plate radius L, thickness H, density ρ, yield strength σ0, and impulse I. An artificial neural network is used to fit the response surface and compute gradients; together with the exponent-matrix method and active subspace analysis, feature construction and dimensionality reduction are performed to identify the dominant dimensionless group(s). The results show that, after analysis in the principal subspace, the five original variables can ultimately be expressed as a combination of the Johnson damage number I2/(ρσ0H2) and the geometric parameter H/L, thereby reducing a multivariable input to a single core variable. The identified dimensionless group effectively characterizes impact damage and dynamic response and exhibits good applicability. The findings provide an efficient data-driven analysis tool for impact-dynamics problems and demonstrate the potential of machine learning in engineering-physics applications.

Key words: Impulsive loading, data-driven, dimensional analysis, dynamic plastic response, finite-element simulation