欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

材料强度-韧性协同作用破片能量耗散机制

郭冬炀1, 赵东志1, 2, 刘德1, 张舒童1, 高沐竹1, 赵爽1*   

  1. 1.沈阳理工大学 装备工程学院, 辽宁 沈阳 110159; 2.北方华安工业集团有限公司, 黑龙江 齐齐哈尔 161046
  • 收稿日期:2025-02-12 修回日期:2025-05-06
  • 基金资助:
    国家自然科学青年基金项目(12202285); 沈阳市科技人才专项项目(RC230925); 辽宁省教育项目(LG212410144045)

Fragmentation Energy Dissipation Mechanism based on Strength-Toughness Synergy of Shell Materials for Hail Suppression and Rain Enhancement

GUO Dongyang1, ZHAO Dongzhi1,2, LIU De1, ZHANG Shutong1, GAO Muzu1, ZHAO Shuang1*   

  1. 1. School of Equipment Engineering, Shenyang Ligong University, Shenyang 110159, Liaoning, China; 2. North Hua’an Industrial Group Co., Ltd., Qiqihar 161000, Heilongjiang, China
  • Received:2025-02-12 Revised:2025-05-06

摘要: 防雹增雨弹作为人工影响天气的核心装备,其自毁后形成的破片特性直接影响作业安全性与催化效能。聚焦弹体材料力学性能对破片成型的作用机制,采用试验、理论和数值仿真相结合的方法,分析S20钢、9260钢、D60钢及823钢在破片质量分布、形态特征及能量耗散等方面的差异。研究结果表明:弹体材料的强度-韧性协同效应对破片断裂模式具有决定性作用。高强度材料(如9260钢)虽能形成均匀细碎破片(1~5 g占比>60%),但韧性不足易导致局部能量集中;低强度高韧性材料(如D60钢)则因塑性变形显著而生成不规则粘连破片(10 g以上占比达32%)。相较之下,823钢凭借独特的力学性能(抗拉强度1000~1200 MPa,冲击韧性40~60 J),在爆炸载荷下实现了脆-韧断裂协同调控,破片质量集中分布于5 g以下(占比85%以上),完全符合国家安全标准(B级,≤10 g),且细碎破片(≤10 g)占比达90%以上,显著降低了地面安全风险。为防雹增雨弹材料的优化设计提供了理论依据,对提升人工影响天气作业的安全性具有重要工程价值。

关键词: 防雹增雨弹, 弹体材料力学性能, 破片能量耗散, 强度-韧性协同, 爆炸动力学

Abstract: Hail suppression and rain enhancement shells, as critical tools for weather modification, have their operational safety and catalytic efficiency directly affected by the fragmentation characteristics formed after self-destruction. This study investigates the mechanism of shell material mechanical properties on fragment formation through experimental, theoretical, and numerical simulation approaches. The differences in fragment mass distribution, morphological characteristics, and energy dissipation among S20 steel, 9260 steel, D60 steel, and 823 steel were analyzed.The results reveal that the strength-toughness synergy of shell materials plays a decisive role in fracture patterns. High-strength materials (e.g., 9260 steel) generate uniform fine fragments (>60% in 1-5 g range) but exhibit localized energy concentration due to insufficient toughness. Low-strength high-toughness materials (e.g., D60 steel) produce irregular agglomerated fragments (32% exceeding 10 g) through significant plastic deformation. In contrast, 823 steel demonstrates optimal brittle-ductile fracture coordination under explosive loading through its unique mechanical properties (tensile strength 1000-1200 MPa, impact toughness 40-60 J), with 85% of fragments concentrated below 5 g and over 90% being fine fragments. This performance fully complies with national safety standards (Class B, ≤10 g) and significantly reduces ground safety risks. The research provides theoretical guidance for optimizing hail suppression shell materials and holds substantial engineering value for enhancing weather modification safety.

Key words: hail suppression and rain enhancement shells, mechanical properties of shell materials, fragmentation energy dissipation, strength-toughness synergy, explosion dynamics

中图分类号: