欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

空地协同场景下特殊障碍物数据集与检测算法评估系统构建

冷呈宇, 赵津*(), 刘畅, 杨世凤   

  1. (贵州大学 机械工程学院, 贵州 贵阳 550025)
  • 收稿日期:2024-07-15 修回日期:2025-04-23
  • 通讯作者: *邮箱:zhaoj@gzu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51965008);贵州省高层次创新型人才(百层次)项目(GCC[2023]016)

Construction of Special Obstacle Dataset and Detection Algorithm Evaluation System in Air-Ground Collaborative Scenarios

LENG Chengyu, ZHAO Jin*(), LIU Chang, YANG Shifeng   

  1. (School of Mechanical Engineering, Guizhou University, Guiyang 550025, Guizhou, China)
  • Received:2024-07-15 Revised:2025-04-23

摘要: 在空地协同场景下,特殊障碍物的识别与处理对地面装备安全运行至关重要。针对非结构化环境中样本稀缺的问题,构建了包含33 124张图像的检测数据集,覆盖多类典型特殊障碍物,支持复杂场景下的识别任务。为准确评估检测算法性能,设计融合类别信息与定位精度的综合评价指标,增强模型对比的科学性。提出结合物理属性与环境语义的可通行性分析方法,为地面无人系统路径规划提供依据。实验结果表明,该数据集与评估体系显著提升检测精度,所提方法能有效识别坑洞、水面等典型特殊障碍物。

关键词: 空地协同, 数据集构建, 特殊障碍物检测, 通行性策略

Abstract: The recognition and handling of special obstacles are critical to ensuring the safe operation of ground equipment in air–ground collaborative scenarios. To address the lack of data samples in unstructured environments, a detection dataset comprising 33,124 images was developed, featuring a wide range of typical special obstacles to support recognition tasks in complex scenes. A comprehensive evaluation metric integrating category information and localization accuracy is designed to enhance the objectivity and reliability of algorithm performance comparisons. Additionally, a passability analysis method is proposed, which combines physical characteristics with environmental semantics to guide path planning for unmanned ground systems. Experimental results demonstrate that the proposed dataset and evaluation framework significantly improve detection accuracy, and the method effectively identifies typical obstacles such as potholes and water surfaces in unstructured environments.

Key words: ground-air collaboration, dataset construction, special obstacle detection, passability strategy

中图分类号: