欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2024, Vol. 45 ›› Issue (11): 3856-3867.doi: 10.12382/bgxb.2023.1048

• • 上一篇    下一篇

引入虚拟目标的高超声速巡航导弹智能机动突防策略

李加申, 王晓芳*(), 林海   

  1. 北京理工大学 宇航学院, 北京 100081
  • 收稿日期:2024-01-26 上线日期:2024-01-26
  • 通讯作者:
  • 基金资助:
    国家自然科学基金项目(11502019)

Intelligent Penetration Policy for Hypersonic Cruise Missiles Based on Virtual Targets

LI Jiashen, WANG Xiaofang*(), LIN Hai   

  1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
  • Received:2024-01-26 Online:2024-01-26

摘要:

针对高超声速巡航导弹机动突防时弹道偏离难以约束、突防策略对不同作战场景的泛化性能较差等问题,提出一种基于虚拟目标和上下文马尔可夫决策过程的智能机动突防决策算法。在以预定弹道为轴线的管状弹道包络面内选定多个静止的虚拟目标,采用深度强化学习算法对其相对预定弹道的位置参数进行决策;用比例导引律引导巡航弹依次攻击这些虚拟目标,在包络面内塑造出能满足突防要求的机动弹道。基于上下文马尔可夫决策过程,将针对单个作战场景的最优突防策略拓展到作战场景的概率分布上,提升突防策略对不同作战场景的适应性。仿真结果表明:该智能机动突防策略能在突防的同时约束弹道偏离,在拦截弹发射位置和机动能力发生变化时仍能保持良好性能。

关键词: 高超声速巡航导弹, 机动突防, 虚拟目标, 上下文马尔可夫决策, 强化学习

Abstract:

An intelligent penetration policy using virtual targets and contextual Markov decision process (CMDP) for hypersonic cruise missiles is proposed to constrain the trajectory deviation and improve the generalization performance in different combat scenarios. The stationary virtual targets are chosen within a tubular envelope with the planned trajectory as axis, and the deep reinforcement learning algorithm is applied to decide their position relative to the axis. Then the proportional guidance law is used to guide the cruise missile to attack these virtual targets one by one with proportional guidance law, thus shaping a maneuvering trajectory meeting the requirements of penetration within the given envelope. The optimal penetration policy for a combat scenario is extended to the probability distribution of combat scenarios using CMDP to improve the generalization performance. The results demonstrate that the penetration policy constrains the trajectory deviation during penetraton and exhibits adaptability to variations of interceptor’s launch position and maneuvering capability.

Key words: hypersonic cruise missile, maneuvering penetration, virtual target, contextual Markov decision, reinforcement learning

中图分类号: