| [1] | JEON I S, LEE J I, TAHK M J. Impact-time-control guidance law for anti-ship missiles[J]. IEEE Transactions on Control Systems Technology, 2006, 14(2): 260-266.  doi: 10.1109/TCST.2005.863655    
																																					URL
 | 
																													
																						| [2] | LEE J I, JEON I S, TAHK M J. Guidance law to control impact time and angle[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1): 301-310.  doi: 10.1109/TAES.2007.357135    
																																					URL
 | 
																													
																						| [3] | CHO N, KIM Y. Modified pure proportional navigation guidance law for impact time control[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(4): 852-872.  doi: 10.2514/1.G001618    
																																					URL
 | 
																													
																						| [4] | 李斌, 林德福, 何绍溟, 等. 基于最优误差动力学的时间角度控制制导律[J]. 航空学报, 2018, 39(11): 157-167. | 
																													
																						|  | LI B, LIN D F, HE S M, et al. Time and angle control guidance law based on optimal error dynamics[J]. Acta Aeronautica et Astronautica Sinica. 2018, 39(11):157-167. (in Chinese) | 
																													
																						| [5] | JEON I S, LEE J I, TAHK M J. Homing guidance law for cooperative attack of multiple missiles[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1): 275-280.  doi: 10.2514/1.40136    
																																					URL
 | 
																													
																						| [6] | ZHOU J L, YANG J Y. Distributed guidance law design for cooperative simultaneous attacks with multiple missiles[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(10): 2439-2447.  doi: 10.2514/1.G001609    
																																					URL
 | 
																													
																						| [7] | HE S M, WANG W, LIN D F, et al. Consensus-based two-stage salvo attack guidance[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 54(3):1555-1566.  doi: 10.1109/TAES.7    
																																					URL
 | 
																													
																						| [8] | HE S M, KIM M G, SONG T, et al. Three-dimensional salvo attack guidance considering communication delay[J]. Aerospace Science and Technology, 2018, 73:1-9.  doi: 10.1016/j.ast.2017.11.019    
																																					URL
 | 
																													
																						| [9] | CHEN Y D, WANG J N, WANG C Y, et al. Three-dimensional cooperative homing guidance law with field-of-view constraint[J]. Journal of Guidance, Control, and Dynamics, 2020, 43(2): 389-397.  doi: 10.2514/1.G004681    
																																					URL
 | 
																													
																						| [10] | SHAFERMAN V, SHIMA T. Cooperative optimal guidance laws for imposing a relative intercept angle[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(8): 1395-1408.  doi: 10.2514/1.G000568    
																																					URL
 | 
																													
																						| [11] | SHAFERMAN V, SHIMA T. Cooperative differential games guidance laws for imposing a relative intercept angle[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(10): 2465-2480.  doi: 10.2514/1.G002594    
																																					URL
 | 
																													
																						| [12] | WANG X X, HUANG X L, DING S C. Terminal angle constraint finite-time guidance law with input saturation and autopilot dynamics[J]. Journal of the Franklin Institute, 2022, 359(16): 8687-8712.  doi: 10.1016/j.jfranklin.2022.08.046    
																																					URL
 | 
																													
																						| [13] | WANG X X, LAN G , YANG Y F , et al. Terminal angle constrained time‐varying sliding mode guidance law with autopilot dynamics and input saturation[J/OL]. Asian Journal of Control , 2022 (2022-06-30). https://doi.org/10.1002/asjc.2893 . | 
																													
																						| [14] | SONG J H, SONG S M, XU S L. Three-dimensional cooperative guidance law for multiple missiles with finite-time convergence[J]. Aerospace Science and Technology, 2017, 67:193-205.  doi: 10.1016/j.ast.2017.04.007    
																																					URL
 | 
																													
																						| [15] | 王思卓, 范世鹏, 林德福, 等. 考虑目标机动和落角约束的2阶滑模制导律[J]. 兵工学报, 2022, 43(12): 3048-3061. | 
																													
																						|  | WANG S Z, FAN S P, LIN D F, et al. Second order sliding mode guidance law considering target maneuver and impact angle constraint[J]. Acta Armamentarii, 2022, 43(12):3048-3061. (in Chinese)  doi: 10.12382/bgxb.2021.0641
 | 
																													
																						| [16] | WANG X X, LU H Q, HUANG X L, et al. Three-dimensional terminal angle constraint finite-time dual-layer guidance law with autopilot dynamics[J]. Aerospace Science and Technology, 2021, 116: 106818.  doi: 10.1016/j.ast.2021.106818    
																																					URL
 | 
																													
																						| [17] | POLYAKOV A. Nonlinear feedback design for fixed-time stabilization of linear control systems[J]. IEEE Transactions on Automatic Control, 2011, 57(8): 2106-2110.  doi: 10.1109/TAC.2011.2179869    
																																					URL
 | 
																													
																						| [18] | ZUO Z Y, TIE L. Distributed robust finite-time nonlinear consensus protocols for multi-agent systems[J]. International Journal of Systems Science, 2016, 47(6): 1366-1375.  doi: 10.1080/00207721.2014.925608    
																																					URL
 | 
																													
																						| [19] | DONG W, WANG C Y, WANG J N, et al. Fixed-time terminal angle-constrained cooperative guidance law against maneuvering target[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 58(2): 1352-1366.  doi: 10.1109/TAES.2021.3113292    
																																					URL
 | 
																													
																						| [20] | CHEN Z Y, CHEN W C, LIU X M, et al. Three-dimensional fixed-time robust cooperative guidance law for simultaneous attack with impact angle constraint[J]. Aerospace Science and Technology, 2021, 110: 106523.  doi: 10.1016/j.ast.2021.106523    
																																					URL
 | 
																													
																						| [21] | YU H, DAI K R, LI H J, et al. Three-dimensional adaptive fixed-time cooperative guidance law with impact time and angle constraints[J]. Aerospace Science and Technology, 2022, 123: 107450.  doi: 10.1016/j.ast.2022.107450    
																																					URL
 | 
																													
																						| [22] | HE S M, LIN D F. Three-dimensional optimal impact time guidance for antiship missiles[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(4): 941-948.  doi: 10.2514/1.G003971
 | 
																													
																						| [23] | LIN D F, JI Y, WANG W, et al. Three-dimensional impact angle-constrained adaptive guidance law considering autopilot lag and input saturation[J]. International Journal of Robust and Nonlinear Control, 2020, 30(9): 3653-3671.  doi: 10.1002/rnc.v30.9    
																																					URL
 | 
																													
																						| [24] | ZHU Z, XIA Y Q, FU M Y. Attitude stabilization of rigid spacecraft with finite-time convergence[J]. International Journal of Robust and Nonlinear Control, 2011, 21(6): 686-702.  doi: 10.1002/rnc.1624    
																																					URL
 | 
																													
																						| [25] | OLFATI-SABER R, MURRAY R M. Consensus problems in networks of agents with switching topology and time-delays[J]. IEEE Transactions on Automatic Control, 2004, 49(9): 1520-1533.  doi: 10.1109/TAC.2004.834113    
																																					URL
 | 
																													
																						| [26] | HUANG Y J, KUO T C, CHANG S H. Adaptive sliding-mode control for nonlinearsystems with uncertain parameters[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2008, 38(2): 534-539.  doi: 10.1109/TSMCB.3477    
																																					URL
 |