欢迎访问《兵工学报》官方网站,今天是 分享到:

兵工学报 ›› 2021, Vol. 42 ›› Issue (12): 2762-2770.doi: 10.3969/j.issn.1000-1093.2021.12.024

• 论文 • 上一篇    下一篇

基于Laplace先验和稀疏块相关性的旋转机械振动信号贝叶斯压缩重构

马云飞1, 白华军2, 温亮2, 郭驰名2, 贾希胜2   

  1. (1.武警士官学校 军械系, 浙江 杭州 310023; 2.陆军工程大学石家庄校区 装备指挥与管理系, 河北 石家庄 050003)
  • 发布日期:2022-01-15
  • 通讯作者: 贾希胜(1964—),男,教授,博士生导师 E-mail:xs_jia@sina.cn
  • 作者简介:马云飞(1992—),男,博士。E-mail: fcz1992@sina.com

Bayesian Compression and Reconstruction for Rotating Mechanical Vibration Signal Based on Laplace Prior and Sparse BlockCorrelation

MA Yunfei1, BAI Huajun2, WEN Liang2, GUO Chiming2, JIA Xisheng2   

  1. (1.Department of Armament,Noncomissioned Officer Academy of CAPF,Hangzhou 310023,Zhejiang,China;2.Equipment Command and Management Department, Shijiazhuang Campus, Army Engineering University,Shijiazhuang 050003,Hebei,China)
  • Published:2022-01-15

摘要: 为通过无线传输实时监测装备状态,针对机械振动信号采样频率较高导致压缩重构困难的问题,将Laplace先验模型和振动信号周期性稀疏块相结合,提出一种改进的贝叶斯压缩感知算法。建立基于Laplace分布的贝叶斯先验模型,相对于高斯先验具有更强的稀疏促进作用。根据机械设备转速和采样频率计算振动信号类周期,对信号进行周期性分块,并基于多稀疏块共享相同超参数的特点,采用快速相关向量机迭代估计出原始信号期望。选取两级平行轴齿轮箱作为研究对象,进行压缩重构仿真实验。结果表明,该方法在相同稀疏基下能有效改善机械振动信号的重构效果。

关键词: 机械振动信号, Laplace先验, 稀疏块, 贝叶斯压缩, 压缩感知

Abstract: For the difficult compression and reconstruction of mechanical vibration signal caused by high sampling frequency,an improved Bayesian compressive sensing algorithm is proposed by combining Laplace prior model with periodic sparse block of vibration signal for monitoring the equipment condition in real-time through wireless transmission. A Laplace distribution-based Bayesian priori model is proposed, which has stronger sparse promotion effect compared to Gaussian priori model. The vibration signal period is calculated according to the rotational speed and sampling frequency of mechanical equipment for dividing the signal periodically.The original signal expectation is estimated iteratively by fast correlation vector machine based on the feature of that multiple sparse blocks share the same hyperparameters.A two-stage parallel gearbox is selected as the research object. The compression and reconstruction simulations were carried out. It is found that the proposed method can effectively improve the reconstruction effect of mechanical vibration signals using the same sparse basis.

Key words: mechanicalvibrationsignal, Laplacepriori, sparseblock, Bayesiancompression, compressivesensing

中图分类号: