[1] Zander J, Malmgren G. Adaptive frequency hopping in HF communications[J]. IEE Proceedings-Communications, 1995, 142(2): 99-105. [2] Herrick D L, Lee P K. CHESS a new reliable high speed HF radio[C]∥Proceedings of IEEE Military Communications Conference. McLean, VA, US: IEEE, 1996:684-690. [3] Candès E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509. [4] Candes E J, Tao T. Near-optimal signal recovery from random projections: universal encoding strategies?[J]. IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425. [5] Liu S, Yang F, Zhang C, et al. Narrowband interference mitigation based on compressive sensing for OFDM systems[J]. IEICE Transactions on Fundamentals of Electronics Communications & Computer Sciences, 2015, E98-A(3): 870-873. [6] Liu S, Yang F, Song J, et al. Block sparse bayesian learning based NB-IoT interference elimination in LTE-advanced systems[J]. IEEE Transactions on Communications, 2017, 65(10): 4559-4571. [7] 康宗荣, 田鹏武, 于弘毅. 一种基于选择性测量的自适应压缩感知方法[J].物理学报, 2014, 63(20): 139-146. KANG Zong-rong, TIAN Peng-wu, YU Hong-yi. An adaptive compressed sensing method based on selective measure[J]. Acta Physica Sinica, 2014, 63(20): 139-146. (in Chinese) [8] 文方青, 张弓, 陶宇,等. 面向低信噪比的自适应压缩感知方法[J]. 物理学报, 2015, 64(8): 084301-1-084301-8. WEN Fang-qing, ZHANG Gong, TAO Yu, et al. Adaptive compressive sensing toward low signal-to-noise ratio scene[J]. Acta Physica Sinica, 2015, 64(8): 084301-1-084301-8. (in Chinese) [9] Zhang Y S,Jia X. Adaptive interference suppression for DSSS communications based on compressive sensing[J]. International Journal of Communication Systems,2018,31(11):e3699.
[10] Eldar Y C, Bolcskei H. Block-sparsity: coherence and efficient recovery[C]∥Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Taipei: IEEE, 2009: 2885-2888. [11] Zhang Z L, Rao B D. Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(5): 912-926. [12] Candès E J. The restricted isometry property and its implications for compressed sensing[J]. Comptes Rendus Mathematique, 2008, 346(9): 589-592. [13] Baraniuk R G. A lecture on compressive sensing[J]. IEEE Signal Processing Magazine, 2007, 24(4): 118-121. [14] Tipping M E. Sparse Bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2011, 1(3): 211-244. [15] Kushary D. The EM algorithm and extensions[J]. Technome-trics, 2008, 40(3): 260. [16] Zhang Z L, Rao B D. Extension of SBL algorithms for the reco- very of block sparse signals with intra-block correlation[J]. IEEE Transactions on Signal Processing, 2012, 61(8): 2009-2015. [17] Arias-Castro E, Eldar Y C. Noise folding in compressed sensing[J]. IEEE Signal Processing Letters, 2011, 18(8): 478-481. [18] 王伟, 唐伟民, 王犇,等. 基于贝叶斯压缩感知的复数稀疏信号恢复方法[J]. 电子与信息学报, 2016, 38(6): 1419-1423. WANG Wei, TANG Wei-min, WANG Ben, et al. A parse signal recovery based on complex Bayesian compressive sensing[J]. Journal of Electronics & Information Technology, 2016, 38(6): 1419-1423. (in Chinese)
下6篇留版
第39卷 第9期2018 年9月兵工学报ACTA ARMAMENTARIIVol.39No.9Sep.2018
|