[1] Haykin S, Thomson J, Reed H. Spectrum sensing for cognitive radio [J]. Proceedings of the IEEE, 2009, 97(5): 849-877. [2] 焦李成, 杨淑媛, 刘芳, 等. 压缩感知回顾与展望[J]. 电子学报, 2011, 39(7):1651-1662. JIAO Li-cheng, YANG Shu-yuan, LIU Fang, et al. Development and prospect of compressive sensing[J]. Chinese Journal of Electronics, 2011, 39(7):1651-1662.( in Chinese) [3] Tian Z, Giannakis G B. Compressed sensing for wideband cognitive radios[C]∥2007 IEEE International Conference on Acoustics, Speech, and Signal Processing. Honolulu, HI: IEEE, 2007. [4] Yen C P, Tsai Y, Wang X. Wideband spectrum sensing based on sub-Nyquist sampling[J]. IEEE Transactions on Signal Processing, 2013,61(12): 3028–3040. [5] Pan L, Xiao S, Yuan X. Wideband power spectrum sensing for cognitive radios based on sub-Nyquist sampling[J]. Wireless Personal Communications, 2015, 84(2):919-933. [6] Khalaf T A, Abdelsadek M Y, Farrag M. Compressed measurements based spectrum sensing for wideband cognitive radio systems[J]. International Journal of Antennas and Propagation, 2015, 2015(4):1-7. [7] Akyildz I F, Lo B F, Balakrishnan R. Cooperative spectrum sensing in cognitive radio networks: a survey[J]. Physical Communication, 2011,4(1): 40-62. [8] Arroyo-Valles R, Maleki S, Leus G. Distributed wideband spectrum sensing for cognitive radio networks[C]∥2014 IEEE International Conference on Acoustics, Speech and Signal Processing .Florence, Italy:IEEE,2014:7263-7267. [9] Grnroos S, Nybom K, Bjrkqvist J, et al. Distributed spectrum sensing using low cost hardware[J]. Journal of Signal Processing Systems, 2016, 83(1):5-17. [10] Davenport M, Boufounos P, Wakin M, et al. Signal processing with compressive measurements[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 445-460. [11] Abo-Zahhad M M, Hussein A I, Mohamed A M. Compressive sensing algorithms for signal processing applications: a survey[J]. International Journal of Communications Network and System Sciences, 2015, 8(6):197-216. [12] Baraniuk R, Davenport M, Devore R, et al. A simple proof of the restricted isometry property for random matrices[J]. Constructive Approximation, 2015, 28(3):253-263. [13] Eftekhari A, Han L Y, Rozell C J, et al. The restricted isometry property for random block diagonal matrices[J]. Applied and Computational Harmonic Analysis, 2015, 38(1):1-31. [14] Bianchi P, Debbah M, Maida M, et al. Performance of statistical tests for single-source detection using random matrix theory[J]. IEEE Transactions on Information Theory, 2011, 57(4): 2400-2419. [15] Nadler B, Penna F, and Garello R. Performance of eigenvalue-based signal detectors with known and unknown noise level[C]∥IEEE International Conference on Communications. Kyoto, Japan: IEEE, 2011. [16] Johnstone I. On the distribution of the largest eigenvalue in principle components analysis[J]. The Annals of Statistics, 2001, 29(2): 295-327. [17] Wang J, Kwon S, Li P, et al. Recovery of sparse signals via generalized orthogonal matching pursuit: a new analysis[J]. IEEE Transactions on Signal Processing, 2016, 64(4):1076-1089. |