[1] 武晓松, 陈军, 王栋. 固体火箭发动机原理[M]. 北京:兵器工业出版社, 2010. WU X X, CHEN J, WANG D. Principle of solid rocket motor[M]. Beijing: Publishing House of Ordnance Industry, 2010. (in Chinese) [2] 田维平, 王立武, 王伟. 固体火箭发动机技术发展和面临的关键技术问题[J]. 固体火箭技术, 2021, 44(1): 4-8. TIAN W P, WANG L W, WANG W. Technological development and key technical problems in solid rocket motors[J]. Journal of Solid Rocket Technology, 2021, 44(1): 4-8. (in Chinese) [3] LAL C J, PADMANABHAN M S, PILLAI B C. A mechanism of ignition peak in solid motors[C]∥Proceedings of the 4th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Salt Lake City, UT, US:AIAA, 1998. [4] SALITA M. Modern SRM ignition transient modeling. i- introduction and physical models[C]∥Proceedings of the 37th AIAAI/ASME/ SAE/ASEE Joint Propulsion Conference and Exhibit. Salt Lake City, UT, US: AIAA, 2001. [5] HORTON J G. Experimental evaluation of solid propellant rocket motors under acceleration loads[J]. Journal of Spacecraft and Rockets,1964, 1: 673-675. [6] 曹泰岳, 张为华, 郭印诚. 旋转固体火箭发动机内弹道数值模拟[J]. 兵工学报, 1997, 18(1):15-17. CAO T Y, ZHANG W H, GUO Y C. Numerical simulation on the internal ballistics of swirling solid rocket motor[J]. Acta Armamentarii, 1997 18(1):15-17. (in Chinese) [7] LUCY M H, NORTHAM G B. Effects of acceleration upon solid-rocket performance[J]. Journal of Spacecraft and Rockets,1969, 6: 456-459 [8] 何国强, 王国辉, 蔡体敏, 等. 过载条件下固体发动机内流场数值模拟[J]. 推进技术, 2002, 23(3):182-185. HE G Q, WANG G H, CAI T M, et al. Numerical simulation on 3-D two-phase flow field in SRM with acceleration load[J]. Journal of Propulsion and Technology, 2002, 23(3):182-185. (in Chinese) [9] 曹军, 郭颜红, 邢强. 高过载条件下固体火箭发动机工作稳定性研究[J]. 航空兵器, 2014, 21(1):33-36. CAO J, GUO Y H, XING Q. Research on the working stabilization of solid rocket motor under high acceleration[J]. Aero Weaponry, 2014, 21(1):33-36. (in Chinese) [10] GALFETTI L, COLOMBO G, MENALLI A. Experimental study of solid-propellant ignition transient and flame spreading under convective flows[J]. Combustion, Explosion and Shock Waves, 2000, 36(1):108-118. [11] WINFRED A, FOSTER J, RHONALD M J. Direct measurement of internal flow velocities in a star-slot model[C]∥Proceedings of the 33rd Joint Propulsion Conference and Exhibit. Seattle, WA, US: AIAA, 1997. [12] TIAN H, YU R P, ZHU H. Three-dimensional numerical and experimental studies on transient ignition of hybrid rocket motor[J]. Acta Astronautica, 2017, 140: 247-254. [13] GALFETTI L, COLOMBO G, MENALLI A, et al. Experimental study of solid-propellant ignition transient and flame spreading under convective flows[J]. Combustion Explosion and Shock Waves, 2000, 36(1): 108-118. [14] GODIL J, KAMRAN A. Numerical simulation of ignition transient in solid rocket motor: a revisit[J]. Aircraft Engineering and Aerospace Technology, 2017, 89(6): 936-945. [15] HU B W, WANG B, TIAN X T. Numerical modeling and studies of ignition transients in end-burning-grain solid rocket motors[J]. Journal of Propulsion and Power, 2016, 32(6):1333-1342. [16] MIURA H, MATSUO A, NAKAMURA Y. Three-dimensional simulation of pressure fluctuation in a granular solid propellant chamber within an ignition stage[J]. Propellants Explosives Pyrotechnics, 2011, 36(3):259-267. [17] EMELYANOV V N, TETERINA I V, VOLKOV K N. Pressure oscillations and instability of working processes in the combustion chambers of solid rocket motors[J]. Acta Astronautica, 2017, 135: 161-171. [18] LI Q, LIU P J, HE G Q. Fluid-solid coupled simulation of the ignition transient of solid rocket motor[J]. Acta Astronautica, 2015, 110: 180-190. [19] LI Y K, CHEN X, Xu J S, ZHOU C S. Three-dimensional multi-physics coupled simulation of ignition transient in a dual pulse solid rocket motor[J]. Acta Astronautica, 2018, 146: 46-65. [20] 宋君才, 许进升, 杜红英, 等.固体火箭发动机Ⅱ脉冲点火过程流固耦合分析[J] .弹道学报, 2021, 33(3):72-74. SONG J C, XU J S, DU H Y, et al. Fluid-solid coupling analysis of ignition process for the Ⅱ pulse of double-pulse solid rocket motor[J]. Journal of Ballistics, 2021, 33(3):72-74. (in Chinese) [21] 夏定国, 许桂阳, 魏志军, 等. 点火药量对双脉冲固体火箭发动机点火过程影响[J]. 航空动力学报, 2022(2): 433-442. XIA D G, XU G Y, WEI Z J, et al. Impact of ignition charge on ignition process of dual-pulse solid rocket motor[J]. Journal of Aerospace Power, 2022(2): 433-442. (in Chinese) [22] 唐金兰, 樊建龙, 李进贤, 等. SRM点火瞬态凝相粒子对火焰传播过程的影响[J]. 宇航学报, 2008, 29(5): 142-146. TANG J L, FAN J L, LI J X, et al. The influence of coagulate particle to the flame propagation process in SRM ignition transient[J]. Journal of Astronautics, 2008, 29(5): 142-146. (in Chinese) [23] 丁鸿铭, 卓长飞, 陈浩田, 等. 基于点火药颗粒的固体火箭发动机点火瞬态过程数值研究[J]. 北京理工大学学报, 2020, 40(8): 819-825. DING H M, ZHUO C F, CHEN H T, et al. Numerical study on ignition transient process of solid rocket motor based on ignition particle[J]. Transaction of Beijing Institude of Technology, 2020, 40(8): 819-825. (in Chinese) [24] 周海清, 尤政, 张平. 颗粒传热增强对微型脉冲推力器点火过程的影响[J]. 固体火箭技术, 2006, 29(1): 31-34. ZHOU H Q, YOU Z, ZHANG P. Effect of particle heat transfer enhancement on ignition process of miniature impulse thruster[J]. Jounal of Solid Rocket Technology, 2006, 29(1): 31-34. (in Chinese) [25] NORTHAM G B. Effects of the acceleration vector on transient burning rate of an aluminized solid propellant[J]. Journal of Spacecraft and Rockets, 1971, 8: 1133-1137. [26] STURM E J, REICHENBACH R. An experimental study of the burning rates of aluminized composite solid propellants in acceleration fields[C]∥Proceedings of the 3rd AIAA Solid Propulsion Conference. NJ, US: AIAA, 1968. [27] CROWE C T, WILLOUGHBY P G. Effect of spin on the internal ballistics of a solid propellant motor[C]∥Proceedings of the 3rd and 4th Aerospace Sciences Meeting. New York, NY, US:AIAA, 1966. [28] CAVENY L H, GLICK R L, HODGE B K. Effect of acceleration on the burning rate of composite propellants[C]∥Proceedings of the 3rd Propulsion Joint Specialist Conference. Washington, DC, US: AIAA, 1967:AIAA-67-470. [29] WILLOUGHBY P G, BAKER K L, HERMSEN R W. Photographic study of solid propellants burning in an acceleration environment[J]. Symposium on Combustion, 1971, 13: 1033-1045. [30] CROWE C T. A unified model for the acceleration-produced burning rate augmentation of metalized solid propellants[J]. Combustion Science and Technology, 1972, 5: 55-60. [31] SABNIS J S, JONG F D, GIBELING H J. Calculation of particle trajectories in solid-rocket motors with arbitrary acceleration[J]. Journal of Propulsion & Power, 1992, 8(5): 961-967. [32] GREATRIX D R. Influence of initial propellant temperature on solid rocket internal ballistics[C]∥ Proceedings of the 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. San Jose, CA, US: AIAA, 2013. [33] GREATRIX D R, GOTTLIEB J J. Normal acceleration model for composite-propellant combustion[J]. Transactions Canadian Society for Mechanical Engineering, 1988, 12(4):205-211. [34] GREATRIX D R. Parametric analysis of combined acceleration effects on solid-propellant combustion[J]. Canadian Aeronautics and Space Journal, 1994, 40:68-73. [35] LENOIR J M, ROBILLARD G. A mathematical method to predict the effects of erosive burning in solid-propellant rockets[J]. Symposium on Combustion, 1956, 6(1):663-667. [36] KING M K. A model of erosive burning of composite propellants[J]. Journal of Spacecraft and Rockets, 1978, 15(3): 139-146. [37] GUAN D, LI S P, SUI X, et al. Mechanism of influence of high-speed self-spin on ignition transients for a solid rocket motor: a numerical simulation[J]. Propellants Explosives Pyrotechnics, 2020, 45(7):1040-1056. [38] 官典, 李世鹏, 刘筑, 等. 横向过载对固体火箭发动机推进剂点火建压过程的影响[J]. 兵工学报, 2021, 42(9):1877-1887. GUAN D, LI S M, LIU Z, et al. Influence of lateral acceleration on ignition transients of solid rocket motor[J]. Acta Armamentarii, 2021, 42(9):1877-1887.(in Chinese) [39] PERETZ A, KUO K K. The starting transient of solid-propellant rocket motors with high internal gas velocities[J]. AIAA Journal, 1973,11(12): 1919-1927. [40] ANSYS Fluent Theory Guide Release 13.0[M]. Pennsylvania, US: ANSYS Inc., 2010:100-141. [41] GREATRIX D R. Acceleration-based combustion augmentation modelling for non-cylindrical grain solid rocket motors[C]∥Proceedings of the 31st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. San Diego, CA, US: AIAA, 1995: AIAA-95-2876. [42] GREATRIX D R. Powered flight: the engineering of aerospace propulsion[M]. London, UK: Springer-Verlag London, 2012: 97-124. [43] 周海清.脉冲推力器点火过程数值模拟及尾焰检测技术研究[D]. 北京:北京理工大学, 2005. ZHOU H Q. Numerical simulation of ignition stage and experimental investigation of exhaust plume on solid propellant impulsive microthruster[D]. Beijing: Beijing Institute of Technology, 2005. (in Chinese) [44] LAUNDER B E, SPALDING D B. Lectures in Mathematical Models of Turbulence[M]. London, UK: Academic Press, 1972: 157-162. [45] MOORE J, KUO K, FERRARA P. Flame spreading in a simulated fin-slot rocket motor[C]∥Proceedings of the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Cincinnati, OH, US:AIAA, 2007.
|