Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (12): 4191-4204.doi: 10.12382/bgxb.2024.0977
Previous Articles Next Articles
Received:
2024-10-16
Online:
2024-12-30
Contact:
CHEN Yijie
CLC Number:
MAO Ming, CHEN Yijie. Scientific and Technical Issues in Cross-terrain Process and Driving Device Design[J]. Acta Armamentarii, 2024, 45(12): 4191-4204.
Add to citation manager EndNote|Ris|BibTeX
[1] |
中华人民共和国国务院新闻办公室. 国防白皮书: 中国的军事战略[R/OL]. (2015-05-26). https://www.gov.cn/zhengce/2015-05/26/content_2868988.htm.
|
Information Office of the State Council of the People’s Republic of China. Whitepaper on national defense: China’s military strategy[R/OL]. (2015-05-26). https://www.gov.cn/zhengce/2015-05/26/content_2868988.htm. (in Chinese)
|
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
陈秉聪. 土壤-车辆系统力学[M]. 北京: 中国农业出版社, 1981.
|
|
|
[12] |
培克 M G. 陆用车辆行驶原理[M]. 孙凯南, 译. 北京: 机械工业出版社, 1962.
|
|
|
[13] |
李杰, 庄继德, 翟忠魁. 车辆行驶的表层沙土非线性弹性本构模型的试验研究[J]. 农业工程学报, 1996(2): 54-58.
|
|
|
[14] |
杨聪彬, 董明明, 顾亮, 等. 考虑履刺形状的履带板土壤推力研究[J]. 北京理工大学学报, 2015, 35(11): 1118-1121.
|
|
|
[15] |
刘聚德. 车辆沙地行驶理论[M]. 北京: 机械工业出版社, 1996.
|
|
|
[16] |
张克健. 车辆地面力学[M]. 北京: 国防工业出版社, 2002.
|
|
|
[17] |
王玉杰. 基于离散元法的车轮与松软地面相互作用分析[D]. 长春: 吉林大学, 2012.
|
|
|
[18] |
杨涛. 基于离散元法的弹性车轮与松软地面相互作用分析[D]. 长春: 吉林大学, 2021.
|
|
|
[19] |
肖万港, 周云波, 傅耀宇, 等. 土壤对军用越野车辆机动性能影响分析[J]. 兵工学报, 2024, 45(1): 288-298.
doi: 10.12382/bgxb.2022.0528 |
doi: 10.12382/bgxb.2022.0528 |
|
[20] |
黄雪涛, 谢虎, 李加坤, 等. 履带式农业装备黏土壤土通过性研究[J]. 中国农机化学报, 2023, 44(6): 114-119.
|
doi: 10.13733/j.jcam.issn.20955553.2023.06.016 |
|
[21] |
黄雪涛, 李玉琼, 董明明, 等. 履带装备超湿黏土壤土地面通过性研究[J]. 光学精密工程, 2023, 31(5): 719-728.
|
|
|
[22] |
刘卫鹏. 高速履带车辆与软质地面动态耦合机理研究[D]. 北京: 北京理工大学, 2024.
|
|
|
[23] |
孔涵. 考虑轮壤耦合作用的三轴分布式驱动车辆转矩分配[D]. 北京: 北京理工大学, 2024.
|
|
|
[24] |
李晓东. 世界上最快的无人战车——美国“粗齿锯”高速履带车[J]. 轻兵器, 2010(4): 20-23.
|
|
|
[25] |
Stuffi. Le nouveau robot de Boston Dynamics estterrifi-ant[EB/OL]. (2017-02-28). in French)
|
[26] |
|
[27] |
|
[28] |
|
[29] |
杜甫, 毛明, 陈轶杰, 等. 基于动力学模型与参数优化的ISD悬挂结构设计及性能分析[J]. 振动与冲击, 2014, 33(6): 59-65.
|
|
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
祝恒佳, 田思远, 李双宝, 等. 车辆电磁馈能式动力吸振器设计[J]. 浙江大学学报(工学版), 2023, 57(8): 1644-1654.
|
|
|
[37] |
朱惠莲. 松软地面行走机构的研究现状和展望[J]. 科技信息, 2006(8): 138-139.
|
|
|
[38] |
司跃元, 赵新华, 侍才洪, 等. 轮履复合机器人行走机构的设计及运动学分析[J]. 机械设计与制造, 2013(7): 191-193.
|
|
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
周忠胜. 车辆装备“越野平均速度”类指标研究综述[J]. 汽车科技, 2024(3): 15-24, 30.
|
|
|
[44] |
|
[45] |
|
[46] |
|
[47] |
曲梦可, 王洪波, 荣誉. 轮腿混合机器人机械腿动力学建模与驱动预估[J]. 兵工学报, 2017, 38(8): 1619-1629.
doi: 10.3969/j.issn.1000-1093.2017.08.021 |
|
|
[48] |
|
[49] |
陈渐伟, 于传强, 刘志浩, 等. 多轴特种车辆的数据建模方法及横向动力学应用[J]. 兵工学报, 2023, 44(1): 165-175.
doi: 10.12382/bgxb.2022.0811 |
doi: 10.12382/bgxb.2022.0811 |
|
[50] |
|
[51] |
|
[52] |
张昊, 魏超, 胡纪滨, 等. 基于转向模式切换的三轴独立转向车辆路径跟踪控制研究[J]. 机械工程学报, 2024, 60(2): 243-251.
|
|
|
[53] |
|
[54] |
|
[55] |
|
[56] |
赵轩, 王姝, 马建, 等. 分布式驱动电动汽车底盘集成控制技术综述[J]. 中国公路学报, 2023, 36(4): 221-248.
doi: 10.19721/j.cnki.1001-7372.2023.04.018 |
doi: 10.19721/j.cnki.1001-7372.2023.04.018 |
|
[57] |
张雷, 徐同良, 李嗣阳, 等. 全线控分布式驱动电动汽车底盘协同控制研究综述[J]. 机械工程学报, 2023, 59(20): 261-280.
doi: 10.3901/JME.2023.20.261 |
doi: 10.3901/JME.2023.20.261 |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
doi: 10.1109/LRA.2019.2926677 |
[66] |
|
[67] |
|
[68] |
|
[69] |
机器人分类:GB/T 39405—2020[S]. 北京: 中国标准出版社, 2020.
|
Classification of robot: GB/T 39405—2020[S]. Beijing: Standards Press of China, 2020. (in Chinese)
|
|
[70] |
邓宗全, 范雪兵, 高海波, 等. 载人月球车移动系统综述及关键技术分析[J]. 宇航学报, 2012, 33(6): 675-689.
|
|
|
[71] |
宁波. “玉兔号”是怎样被设计出来——我国首个月球车诞生记[EB/OL]. (2013-12-16). https://www.chinadaily.com.cn/tech/2013-12/16/content_17176424.htm.
|
|
|
[72] |
潘冬, 贾阳, 袁宝峰, 等. 祝融号火星车主动悬架式移动系统设计与验证[J]. 中国科学: 技术科学, 2022, 52(2): 278-291.
|
|
|
[73] |
新浪网. 倒计时!祝融号将以每秒4.9公里俯冲火星,中国即将获得登火第二[EB/OL]. (2021-05-13). https://k.sina.com.cn/article_2665232937_9edc3a29019012vio.html.
|
Sina. Countdown! The Zhu Rong rover will be plunging into Mars at a speed of 4.9 kilometers per second, and China is about to achieve its second landing on Mars[EB/OL]. (2021-05-13). https://k.sina.com.cn/article_2665232937_9edc3a29019012vio.html. (in Chinese)
|
|
[74] |
|
[75] |
张鑫. 基于单环运动链移动机构的跳跃步态规划与分析[D]. 北京: 北京交通大学, 2023.
|
|
|
[76] |
苏波, 闫曈, 许威, 等. 四足机器人高机动越野技术研究[J]. 中国科学: 技术科学, 2023, 53(9): 1574-1588.
|
|
|
[77] |
|
[78] |
|
[79] |
|
[80] |
|
[81] |
|
[82] |
|
[83] |
|
[84] |
|
[85] |
|
[86] |
|
[87] |
|
[88] |
|
[89] |
|
[90] |
|
[91] |
|
[92] |
|
[93] |
|
[94] |
|
[95] |
|
[96] |
|
[97] |
|
[98] |
|
[1] | Li Huibin, MA He, LIU Pengfei, YANG Peiying, GUAN Xiaorong. Current Development and Prospects of Wearable Supernumerary Robotic Limbs for Military Applications [J]. Acta Armamentarii, 2024, 45(S1): 287-295. |
[2] | LIU Yali, LU Yanchi, XU Xiaolong, SONG Qiuzhi. A Review of the Evaluation Methods of Assisting Effectiveness of Exoskeleton Robot and Its Applications [J]. Acta Armamentarii, 2024, 45(8): 2497-2519. |
[3] | LIU Yali, LU Yanchi, MA Xunju, SONG Qiuzhi. Surface Electromyography-based Human Motion Pattern Recognition Using Convolutional Neural Networks [J]. Acta Armamentarii, 2024, 45(7): 2144-2158. |
[4] | WANG Xiaolong, CHEN Yang, HU Mian, LI Xudong. Robot Path Planning for Persistent Monitoring Based on Improved Deep Q Networks [J]. Acta Armamentarii, 2024, 45(6): 1813-1823. |
[5] | DONG Mingze, WEN Zhuanglei, CHEN Xiai, YANG Jiongkun, ZENG Tao. Research on Robot Navigation Method Integrating Safe Convex Space and Deep Reinforcement Learning [J]. Acta Armamentarii, 2024, 45(12): 4372-4382. |
[6] | XING Boyang, XU Wei, LI Yufeng, ZHAO Haoyu, WANG Kang, YAN Tong. Model Predictive Control for Wheeled L-quadruped Robots Based on Hierarchical Decoupling [J]. Acta Armamentarii, 2024, 45(12): 4272-4282. |
[7] | DANG Wanying, ZHOU Lelai, LI Yibin, ZHANG Chen. Neural Network Planning Method for Optimal Off-road Configuration of Modular Robots [J]. Acta Armamentarii, 2024, 45(10): 3674-3685. |
[8] | LIU Jiangtao, ZHOU Lelai, LI Yibin. Trajectory Tracking and Obstacle Avoidance Control of Six-wheel Independent Drive and Steering Robot in Complex Terrain [J]. Acta Armamentarii, 2024, 45(1): 166-183. |
[9] | XU Peng, XING Boyang, LIU Yufei, LI Yongyao, ZENG Yi, ZHENG Dongdong. Anti-disturbance Composite Controller Design of Quadruped Robot Based on Extended State Observer and Model Predictive Control Technique [J]. Acta Armamentarii, 2023, 44(S2): 12-21. |
[10] | LIU Siyu, LIAO Junbei, LEI Fei, WANG Zhirui, YAN Tong, DANG Ruina, GUO Zhao. Design and Optimization of a Parallel Elastic Actuator Leg for Quadruped Robots [J]. Acta Armamentarii, 2023, 44(S2): 71-83. |
[11] | JIANG Chenxing, YAO Qichang, XU Peng, ZHOU Yuting, YAN Tong. The Transformation of Quadruped and Biped Robot Technologies under the New Technological Situation [J]. Acta Armamentarii, 2023, 44(S2): 84-89. |
[12] | JU Shuang, WANG Jing, WANG Hao, ZHOU Meng. Formation Reconfiguration Control of Multiple Mobile Robots with Severe Actuator Faults Based on GWO-WOA [J]. Acta Armamentarii, 2023, 44(S2): 114-125. |
[13] | XU Peng, ZHAO Jianxin, FAN Wenhui, QIU Tianqi, JIANG Lei, LIANG Zhenjie, LIU Yufei. Specific Complex Locomotion Skills Control for Quadruped Robots [J]. Acta Armamentarii, 2023, 44(S2): 135-145. |
[14] | LI Caoyan, GUO Zhenchuan, ZHENG Dongdong, WEI Yanling. Multi-robot Cooperative Formation Based on Distributed Model Predictive Control [J]. Acta Armamentarii, 2023, 44(S2): 178-190. |
[15] | XU Wei, SU Bo, JIANG Lei, YAN Tong, XU Peng, WANG Zhirui, QIU Tianqi. Key Technologies and Application Prospects of Off-road Legged Robot Swarm System [J]. Acta Armamentarii, 2023, 44(9): 2568-2579. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||