[1] |
刘澜波, 钱荣毅. 探地雷达:浅表地球物理科学技术中的重要工具[J]. 地球物理学报, 2015, 58(8): 2606-2617.
doi: 10.6038/cjg20150802
|
|
LIU L B, QIAN R Y. Ground penetrating radar:a critical tool in near-surface geophysics[J]. Chinese Journal of Geophysics, 2015, 58(8): 2606-2617. (in Chinese)
|
[2] |
管志宁, 郝天珧, 姚长利. 21世纪重力与磁法勘探的展望[J]. 地球物理学进展, 2002, 17(2): 237-244.
|
|
GUAN Z N, HAO T Y, YAO C L. Prospect of gravity and magnetic exploration in the 21st century[J]. Progress in Geophysics, 2002, 17(2): 237-244. (in Chinese)
|
[3] |
CHEN S D, ZHANG S, ZHU J, et al. Accurate measurement of characteristic response for unexploded ordnance with transient electromagnetic system[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 69(4): 1728-1736.
|
[4] |
张昌达. 关于磁异常探测的若干问题[J]. 工程地球物理学报, 2007, 4(6): 549-553.
|
|
ZHANG C D. Some Problems Concerning the magnetic anomaly detection(MAD)[J]. Chinese Journal of Engineering Geophysics, 2007, 4(6): 549-553. (in Chinese)
|
[5] |
WIGH M D, HANSEN T M, DOSSING A. Inference of unexploded ordnance (UXO) by probabilistic inversion of magnetic data[J]. Geophysical Journal International, 2020, 220(1): 37-58.
|
[6] |
PAOLETTI V, BUGGI A, PASTEKA R. UXO detection by multiscale potential field methods[J]. Pure and Applied Geophysics, 2019, 176(10): 4363-4381.
doi: 10.1007/s00024-019-02202-7
|
[7] |
张朝阳, 刘济民, 杨林. 磁探潜关键技术现状及发展趋势[J]. 科学技术与工程, 2022, 22(1): 18-27.
|
|
ZHANG C Y, LIU J M, YANG L. Situation and development trend of the key technology of magnetic submarine exploration[J]. Science Technology and Engineering, 2022, 22(1): 18-27. (in Chinese)
|
[8] |
NERSESOV B A, AFANASYEV M S, KARABASHEVA E I. Magnetic ranging as a promising line of development of magnetometric tools for searching underwater objects[J]. Oceanology, 2015, 55(2): 306-310.
|
[9] |
CARUSO M J, BRATLAND T, SMITH C H, et al. A new perspective on magnetic field sensing[J]. Sensors, 1998, 15(12): 34-47.
|
[10] |
张昌达. 空磁力梯度张量测量——航空磁测技术的最新进展[J]. 工程地球物理学报, 2006, 3(5): 354-361.
|
|
ZHANG C D. Airborne tensor magnetic gradiometry—The latest progress of airbone magnetometric technology[J]. Chinese Journal of Engineering Geophysics, 2006, 3(5): 354-361. (in Chinese)
|
[11] |
李青竹, 李志宁, 张英堂, 等. 磁梯度张量系统发展及其误差校正研究现状[J]. 装甲兵工程学院学报, 2017, 31(6): 72-81.
|
|
LI Q Z, LI Z N, ZHANG Y T, et al. Research progress of magnetic gradient tensor system and its error calibration[J]. Journal of Academy of Armored Force Engineering, 2017, 31(6): 72-81. (in Chinese)
|
[12] |
YAVUZ E, ADNAN K, HAKAN C, et al. New magnetic measurement system for determining metal covered mines by detecting magnetic anomaly using a sensor network[J]. Indian Journal of Pure & Applied Physics, 2015, 53: 199-211.
|
[13] |
CHWALA A, STOLZ R, ZAKOSARENKO V, et al. Full tensor SQUID gradiometer for airborne exploration[J]. ASEG Extended Abstracts, 2012, 2012(1): 1-4.
|
[14] |
WANG M C, LIN J, YUE L G, et al. Compensation for mobile carrier magnetic interference in a SQUID-based full-tensor magnetic gradiometer using the flower pollination algorithm[J]. Measurement Science and Technology, 2021, 32(8): 085010.
|
[15] |
SUI Y Y, LI G, WANG S L, et al. Compact fluxgate magnetic full-tensor gradiometer with spherical feedback coil[J]. Review of scientific instruments, 2014, 85(1): 014701.
|
[16] |
YIN G, ZHANG Y T, FAN H B, et al. Linear calibration method of magnetic gradient tensor system[J]. Measurement, 2014, 56: 8-18.
|
[17] |
石志勇, 李青竹, 李志宁. IVMD降噪下的磁梯度张量系统集成校准方法[J]. 陆军工程大学学报, 2022, 1(6): 1-10.
doi: 10.12018/j.issn.2097-0730.20211219001
|
|
SHI Z Y, LI Q Z, LI Z N. Integrated calibration method of magnetic gradient tensor system with IVMD noise reduction[J]. Journal of Army Engineering University of PLA, 2022, 1(6): 1-10. (in Chinese)
doi: 10.12018/j.issn.2097-0730.20211219001
|
[18] |
卞骁炜. 铯光泵磁力仪微弱信号检测技术研究[D]. 天津: 天津大学, 2017.
|
|
BIAN X W. Study on optically pumped cesium magnetometer weak signal detection technology[D]. Tianjin:Tianjin University, 2017. (in Chinese)
|
[19] |
OVERWAY D, CLEM T, BONO J, et al. Evaluation of the polatomic P-2000 laser pumped He-4 magnetometer/gradiometer[C]// Proceedings of the 2th OCEANS’02. Biloxi, MI, US: MTS/IEEE, 2002, 2: 952-960.
|
[20] |
DILLON S. P-8A Poseidon multi mission maritime aircraft (P-8A):PMA-290[R]. Patuxent River, MD, US: Maritime Patrol and Reconnaissance Aircraft, 2015.
|
[21] |
张振宇. 氦光泵磁测技术研究[D]. 长春: 吉林大学, 2012.
|
|
ZHANG Z Y. Research on optically pumped heliummagnetic measurement technology[D]. Changchun: Jilin University, 2012. (in Chinese)
|
[22] |
黄岩, 罗丁, 冯自成, 等. 无人直升机航磁测量系统集成及应用[J]. 物探与化探, 2019, 43(2):386-392.
|
|
HUANG Y, LUO D, FENG Z C, et al. Unmanned helicopter aeromagnetic measurement system and its application[J]. Geophysical and Geochemical Exploration, 2019, 43(2): 386-392. (in Chinese)
|
[23] |
ZHOU Z J, WANG C, MA M, et al. Research of control system model and design of digital controller for 4He optically pumped magnetometer (OPM)[J]. Journal of Computational & Theoretical Nanoscience, 2016, 13(1): 43-49.
|
[24] |
HOOD P, MCCLURE D J. Gradient measurements in ground magnetic prospecting[J]. Geophysics, 1965, 30(3): 403-410.
|
[25] |
NELSON J B. Calculation of the magnetic gradient tensor from total field gradient measurements and its application to geophysical interpretation[J]. Geophysics, 1988, 53(7): 957-966.
|
[26] |
PHAM L T, OKSUM E, THANH D. Edge enhancement of potential field data using the logistic function and the total horizontal gradient[J]. Acta Geodaetica et Geophysica, 2019, 54(1): 143-155.
|
[27] |
DOLL W E, GAMEY T J, BEARD L P, et al. Airborne vertical magnetic gradient for near-surface applications[J]. The Leading Edge, 2006, 25(1):50-53.
|
[28] |
SHAHVERDI M, NAMAKI L, MONTAHAEI M, et al. Interpretation of magnetic data based on Tilt derivative methods and enhancement of total horizontal gradient, a case study: Zanjan Depression[J]. Journal of the earth and space physics, 2017, 43(1): 101-113.(in Farsi)
|
[29] |
管志宁, 王继伦, 钱纪安, 等. 航磁梯度在矿产普查中的作用及有关问题讨论[C]// 1994年中国地球物理学会第十届学术年会论文集.长春:中国地球物理学会1994: 285.
|
|
GUAN Z N, WANG J L, QIAN J A, et al. Discussion on the role and related issues of aeromagnetic gradient in mineral exploration[C]// Proceedings of the 10th Academic Annual Meeting of the Chinese Geophysical Society in 1994. Changchun:Chinese Geophysical Society, 1994:285. (in Chinese)
|
[30] |
骆遥, 段树岭, 王金龙, 等. AGS-863航磁全轴梯度勘查系统关键性指标测试[J]. 物探与化探, 2011, 35(5): 620-625.
|
|
LUO Y, DUAN S L, WANG J L, et al. Key indicators testing for AGS-863 three axis airborne magnetic gradiometer[J]. Geophysical and Geochemical Exploration, 2011, 35(5): 620-625. (in Chinese)
|
[31] |
梁建, 庄道泽, 郭玉峰, 等. 利用航磁重复线测量内符合精度消除航磁梯度测量中的转向差[J]. 物探与化探, 2018, 42(3):576-582.
|
|
LIANG J, ZHUANG D Z, GUO Y F, et al. Elimination of steering difference in aeromagnetic gradient measurement using internal accord accuracy for test repeat line in aeromagnetic survey[J]. Geophysical and Geochemical Exploration, 2018, 42(3): 576-582. (in Chinese)
|
[32] |
KRAUSE H J, KREUTZBRUCK M V. Recent developments in SQUID NDE[J]. Physica C: Superconductivity, 2002, 368(1/2/3/4): 70-79.
|
[33] |
DRUNG D, ABMANN C, BEYER J, et al. Highly sensitive and easy-to-use SQUID sensors[J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 699-704.
|
[34] |
MICHAEL M, HAN S, MYERS W R, et al. SQUID-detected microtesla MRI in the presence of metal[J]. Journal of Magnetic Resonance, 2006, 179(1): 146-151.
pmid: 16310385
|
[35] |
王宁, 金贻荣, 邓辉, 等. 基于高温超导量子干涉仪的超低场核磁共振成像研究[J]. 物理学报, 2012, 61(21): 196-203.
|
|
WANG N, JIN Y R, DENG H, et al. Ultra-low field magnetic resonance imaging based on high Tc dc-SQUID[J]. Acta Physica Sinica, 2012, 61(21): 196-203. (in Chinese)
|
[36] |
王永良. 超导量子干涉仪磁传感器电路关键技术研究[D]. 合肥: 中国科学技术大学, 2021.
|
|
WANG Y L. Study on the circuit technologies of SQUID sensors for practical applications[D]. Hefei: University of Science and Technology of China, 2021. (in Chinese)
|
[37] |
WYNN W M, FRAHM C P, CARROLL P J, et al. Advanced super-conducting gradiometer/magnetometer arrays and a novel signal processing technique[J]. IEEE Transactions on Magnetics, 1975, 11: 701-707.
|
[38] |
SCHMIDT P W, CLARK D A. The magnetic gradient tensor: its properties and uses in source characterization[J]. The Leading Edge, 2006, 25(1): 75-78.
|
[39] |
STOLZ R, ZAKOSARENKO V, SCHULZ M, et al. Magnetic full-tensor SQUID gradiometer system for geophysical applications[J]. Leading Edge, 2006, 25(2):178-180.
|
[40] |
COCCHI L, CARMISCIANO C, PALANGIO P, et al. S3MAG-low magnetic noise AUV for multipurpose investigations[C]// Proceedings of OCEANS 2015-Genova. Genova, Italy: IEEE, 2015: 1-4.
|
[41] |
PEI Y H, YEO H G, KANG X Y, et al. Magnetic gradiometer on an AUV for buried object detection[C]// Proceedings of OCEANS 2010 MTS/IEEE. Seattle, WA, US:IEEE, 2010: 1-8.
|
[42] |
王君恒. 磁异常梯度张量理论反演与应用[D]. 武汉: 中国地质大学(武汉), 1990.
|
|
WANG J H. Inversion and application of magnetic anomaly gradient tensor theory[D] Wuhan: China University of Geosciences (Wuhan), 1990. (in Chinese)
|
[43] |
吴招才. 磁力梯度张量技术及其应用研究[D]. 武汉: 中国地质大学(武汉), 2008.
|
|
WU Z C. Magnetic gradient tensor technology and its applications[D] Wuhan: China University of Geosciences (Wuhan), 2008. (in Chinese)
|
[44] |
赵静. 高温超导磁梯度仪关键技术研究[D]. 长春: 吉林大学, 2011.
|
|
ZHAO J. Study on technologies for HTS magnetic gradiometer[D] Changchun: Jilin University, 2011. (in Chinese)
|
[45] |
李光. 基于磁通门的航空磁梯度张量系统研究[D]. 长春: 吉林大学, 2013.
|
|
LI G. Study on airborne fluxgate magnetic tensor gradiometer[D] Changchun: Jilin University, 2013. (in Chinese)
|
[46] |
LI Q Z, LI Z N, ZHANG Y T, et al. Integrated compensation and rotation alignment for three-axis magnetic sensors array[J]. IEEE Transactions on Magnetics, 2018, 54(10): 4001011.
|
[47] |
郑东宁. 超导量子干涉器件[J]. 物理学报, 2021, 70(1): 170-183.
|
|
ZHENG D L. Superconducting quantum interference devices[J]. Acta Physica Sinica, 2021, 70(1): 170-183. (in Chinese)
|
[48] |
HARI R, SALMELIN R. Magnetoencephalography: from SQUIDs to neuroscience. neuroimage 20th anniversary special edition[J]. Neuroimage, 2012, 61(2): 386-396.
doi: 10.1016/j.neuroimage.2011.11.074
pmid: 22166794
|
[49] |
陈林, 李敬东, 唐跃进, 等. 超导量子干涉仪发展和应用现状[J]. 低温物理学报, 2005(增刊1):657-661.
|
|
CHEN L, LI J D, TANG Y K, et al. Superconducting quantum Interferometers devices: applications and prospects perspectives[J]. Journal of Low Temperature Physics, 2005 (S1): 657-661. (in Chinese)
|
[50] |
CLEM T R. Progress in magnetic sensor technology for sea mine detection[C]//Detection and Remediation Technologies for Mines and Minelike Targets II. Orlando, FL, US:SPIE, 1997, 3079: 354-371.
|
[51] |
WYNN M, BONO J. Magnetic sensor operation onboard an AUV: magnetic noise issues and a linear systems approach to mitigation[C]// Proceedings of OCEANS’02 MTS/IEEE. Biloxi, MI, US: IEEE, 2002, 2: 985-993.
|
[52] |
WIEGERT R, PRICE B, HYDER J. Magnetic anomaly sensing system for mine countermeasures using high mobility autonomous sensing platforms[C]// Proceedings of OCEANS’02 MTS/IEEE. Biloxi, MI, US: IEEE, 2002, 2: 937-944.
|
[53] |
WIEGERT R, OESCHGER J. Generalized magnetic gradient contraction based method for detection, localization and discrimination of underwater mines and unexploded ordnance[C]// Proceedings of OCEANS 2005 MTS/IEEE. Washington, DC, US: IEEE, 2005: 1325-1332.
|
[54] |
ALLEN G I, SULZBERGER G, BONO J T, et al. Initial evaluation of the new real-time tracking gradiometer designed for small unmanned underwater vehicles[C]// Proceedings of OCEANS 2005 MTS/IEEE. Washington, DC, US: IEEE, 2005: 1956-1962.
|
[55] |
WIEGERT R F. Man-Portable magnetic scalar triangulation and ranging system for detection, localization and discrimination of UXO:MM-1511[R]. Washington, DC, US: SERDP, 2009.
|
[56] |
BRACKEN R E, BROWN P J. Concepts and procedures required for successful reduction of tensor magnetic gradiometer data obtained from an unexploded ordnance detection demonstration at Yuma Proving Grounds, Arizona: 2006-1027[R]. Reston, VA, US: US Geological Survey, 2006.
|
[57] |
BRACKEN R E, SMITH D V, BROWN P J. Calibrating a tensor magnetic gradiometer using spin data:2005-5045[R]. Reston, VA, US: US Geological Survey, 2005.
|
[58] |
BROWN P J, BRACKEN R E, SMITH D V. A case study of magnetic gradient tensor invariants applied to the UXO problem[C]// SEG Technical Program Expanded Abstracts 2004. Online: Society of Exploration Geophysicists, 2004: 794-797.
|
[59] |
SMITH D V, BRACKEN R E. Field experiments with the tensor magnetic gradiometer system for UXO surveys: a case history[C]// SEG Technical Program Expanded Abstracts 2004. Online: Society of Exploration Geophysicists, 2004: 806-809.
|
[60] |
SMITH D V, PHILLIPS J D, HUTTON S R. Active tensor magnetic gradiometer system: MM-1514[R]. Washington, DC, US:SERDP, 2007.
|
[61] |
WRIGHT D L, SMITH D V, ASCH T H, et al. On-time 3D time-domain EMI and tensor magnetic gradiometry for UXO detection and discrimination: MM-1328[R]. Washington, DC, US:SERDP, 2008.
|
[62] |
GAMEY T J, STARR T, DOLL W E, et al. Initial design and testing of a full-tensor airborne SQUID magnetometer for detection of unexploded ordnance[C]// SEG Technical Program Expanded Abstracts 2004. Online: Society of Exploration Geophysicists, 2004:798-801.
|
[63] |
BILLINGS S. Superconducting magnetic tensor gradiometer system for detection of underwater military munitions: MR-1661[R]. Washington, DC, US: SERDP, 2012.
|
[64] |
KEENAN S T, CLARK D, BLAY K R, et al. Calibration and testing of a HTS tensor gradiometer for underwater UXO detection[C]//Proceedings of 2011 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices. Sydney, Australia:IEEE, 2011: 3-12.
|
[65] |
SCHMIDT P, CLARK D, LESLIE K, et al. GETMAG-a SQUID magnetic tensor gradiometer for mineral and oil exploration[J]. Exploration Geophysics, 2004, 35(4): 297-305.
|
[66] |
BILLINGS S, BLAY K, LESLIE K, et al. Precision geolocation of active electromagnetic sensors using stationary magnetic sensors: MM-1643[R]. Washington, DC, US:SERDP, 2009.
|
[67] |
BLAY K, LESLIE K, TILBROOK D, et al. Precision geolocation of active electromagnetic sensors using stationary magnetic sensors[J]. ASEG Extended Abstracts, 2010, 2010(1): 1-4.
|
[68] |
张昌达. 若干物探技术的最新进展[J]. 工程地球物理学报, 2012, 9(4):406-412.
|
|
ZHANG C D. Developments of several geophysical methods[J]. Journal of Engineering Geophysics, 2012, 9(4): 406-412. (in Chinese)
|
[69] |
FITZGERALD D J. Full tensor magnetic gradiometry[C]// Proceedings of Gravity Gradients for Exploration & Research SAGA 13th Biennial Conference. Kruger National Park, Mpumalanga, South Africa: Southern African Geophysical Association, 2013: 1-7.
|
[70] |
ARGAST D, FITZGERALD D, HOLSTEIN H, et al. Compensation of the full magnetic tensor gradient signal[J]. ASEG Extended Abstracts, 2010, 2010(1): 1-4.
|
[71] |
ZHDANOV M S, WILSON G A, POLOME L. 3D magnetization vector inversion for SQUID-based full tensor magnetic gradiometry[C]// Proceedings of 2012 SEG Annual Meeting.Las Vegas, NV, US: Society of Exploration Geophysicists, 2012.
|
[72] |
STOLZ R, SCHULZ M, ZAKOSARENKO V, et al. Magnetic full tensor gradiometry[C]// Proceedings of the 11th SAGA Biennial Technical Meeting and Exhibition. Swaziland, South Africa: Southern African Geophysical Association, 2009: cp-241-00010.
|
[73] |
LINZEN S, CHWALA A, SCHULTZE V, et al. A LTS-SQUID system for archaeological prospection and its practical test in Peru[J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 750-755.
|
[74] |
MEYER H G, HARTUNG K, LINZEN S, et al. Detection of buried magnetic objects by a SQUID Gradiometer system[J]. Proceedings of SPIE, 2009, 7303: 1-12.
|
[75] |
JANOŠEK M, JAN V, ANTONIN P, et al. Compact full-tensor fluxgate gradiometer[J]. Journal of Electrical Engineering, 2015, 66(7/s): 146-148.
|
[76] |
SCHMIDT A, DABAS M, SARRIS A. Dreaming of perfect data: Characterizing noise in archaeo-geophysical measurements[J]. Geosciences, 2020, 10(10): 382.
|
[77] |
黄玉. 地磁场测量及水下磁定位技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2011.
|
|
HUANG Y. Geomagnetic field measurement and study on underwater magnetic localization technology[D]. Harbin:Harbin Engineering University, 2011. (in Chinese)
|
[78] |
刘丽敏. 磁通门张量的结构设计、误差分析及水下目标探测[D]. 长春: 吉林大学, 2012.
|
|
LIU L M. Configuration design, error analysis, and underwater target detection of fluxgate tensor magnetometer[D]. Changchun: Jilin University, 2012. (in Chinese)
|
[79] |
PANG H F, LUO S T, ZHANG Q, et al. Calibration of a fluxgate magnetometer array and its application in magnetic object localization[J]. Measurement Science and Technology, 2013, 24(7): 075102.
|
[80] |
WU Z T, WU Y X, HU X P, et al. Calibration of three-axis magnetometer using stretching particle swarm optimization algorithm[J]. IEEE Transactions on Instrumentation and Measurement, 2012, 62(2): 281-292.
|
[81] |
PANG H F, PAN M C, WAN C B, et al. Integrated compensation of magnetometer array magnetic distortion field and improvement of magnetic object localization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 52(9): 5670-5676.
|
[82] |
PANG H F, CHEN D X, PAN M C, et al. Nonlinear temperature compensation of fluxgate magnetometers with a least-squares support vector machine[J]. Measurement Science and Technology, 2012, 23(2): 025008.
|
[83] |
WANG C, QU X D, ZHANG X J, et al. A fast calibration method for magnetometer array and the application of ferromagnetic target localization[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(7): 1743-1750.
|
[84] |
李青竹, 李志宁, 张英堂, 等. 平面十字磁梯度张量系统的两步线性校正[J]. 仪器仪表学报, 2017, 38(9): 2232-2242.
|
|
LI Q Z, LI Z N, ZHANG Y T, et al. Two step linear calibration of planar cross magnetic gradient Tensor system[J]. Chinese Journal of Scientific Instrument, 2017, 38(9): 2232-2242. (in Chinese)
|
[85] |
LI Q Z, SHI Z Y, LI Z N, et al. Preferred configuration and detection limits estimation of magnetic gradient tensor system[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1010214.
|
[86] |
李青竹, 石志勇, 李志宁, 等. 差分磁梯度张量测量极限估计[J]. 光学精密工程, 2022, 30(11):1325-1336.
|
|
LI Q Z, SHI Z Y, LI Z N, et al. Estimation method for differential magnetic gradient tensor measurement limits[J]. Optics and Precision Engineering, 2022, 30(11): 1325-1336. (in Chinese)
|
[87] |
LI Q Z, LI Z N, SHI Z Y, et al. Multi-Target magnetic positioning using SAFCM clustering and invariants-improved tilt angle[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5924015
|
[88] |
LV J W, YU Z T, HUANG J L, et al. The compensation method of vehicle magnetic interference for the magnetic gradiometer[J]. Advances in Mathematical Physics, 2013, 2013(1): 523164.
|
[89] |
SHEN M D, CHENG D F, AN Z F, et al. Geometry structure optimization of hexagonal pyramidal full tensor magnetic gradient probe[J]. IEEE Transactions on Magnetics, 2016, 52(9): 6100507.
|
[90] |
QIU L Q, RONG L L, WU J, et al. Development of a squid-based airborne full tensor gradiometers for geophysical exploration[C]// SEG Technical Program Expanded Abstracts 2016. Online: Society of Exploration Geophysicists, 2016: 1652-1655.
|
[91] |
WU J, XIE X M. The study of several key parameters in the design of airborne superconducting full tensor magnetic gradient measurement system[C]// SEG Technical Program Expanded Abstracts 2016. Online: Society of Exploration Geophysicists, 2016: 1588-1591.
|
[92] |
庞鸿锋. 捷联式地磁矢量测量系统误差分析及校正补偿技术[D]. 长沙: 国防科学技术大学, 2015.
|
|
PANG H F. Error analysis and calibration/ compensation method of strap-down geomagnetic vector measurement system[D]. Changsha: National University of Defense Science and Technology, 2015. (in Chinese)
|
[93] |
王一凡. 面向机载地磁测量的磁干扰补偿技术研究[D]. 武汉: 华中科技大学, 2012.
|
|
WANG Y F. A thesis submitted in partial fulfillment of the requirements for the degree of master of science[D]. Wuhan: Huazhong University of Science and Technology, 2012. (in Chinese)
|
[94] |
PRIMDAHL F. Temperature compensation of fluxgate magnetometers[J]. IEEE transactions on magnetics, 1970, 6(4): 819-822.
|
[95] |
李青竹, 李志宁, 张英堂, 等. 磁梯度张量系统传感器阵列的快速旋转校准[J]. 光学精密工程, 2018, 26(7): 1813-1826.
|
|
LI Q Z, LI Z N, ZHANG Y T, et al. Fast rotation calibration of sensor array in magnetic gradient tensor system[J]. Optics and Precision Engineering, 2018, 26(7): 1813-1826. (in Chinese)
|
[96] |
王婕, 郭子祺, 刘建英. 固定翼无人机航磁探测系统的磁补偿模型分析[J]. 航空学报, 2016, 37(11):3435-3443.
doi: 10.7527/S1000-6893.2016.0059
|
|
WANG J, GUO Z Q, LIU J Y. Analysis on magnetic compensation model of fixed-wing UAV aeromagnetic detection system[J] Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3435-3443. (in Chinese)
doi: 10.7527/S1000-6893.2016.0059
|
[97] |
张宁, 赵建扬, 林春生, 等. 直升机平台背景磁干扰小信号模型求解与补偿[J]. 电子学报, 2017, 45(1):83-88.
doi: 10.3969/j.issn.0372-2112.2017.01.012
|
|
ZHANG N, ZHAO J Y, LIN C S, et al. Helicopter platform background magnetic interference small signal model solving and compensation[J]. Acta Electronica Sinica, 2017, 45(1):83-88. (in Chinese)
doi: 10.3969/j.issn.0372-2112.2017.01.012
|
[98] |
MERAYO J M G, BRAUER P, PRIMDAHL F, et al. Scalar calibration of vector magnetometers[J]. Measurement Science and Technology, 2000, 11: 120-132.
|
[99] |
PYLYANAINEN T. Automatic and adaptive calibration of 3D field sensors[J]. Applied mathematical modelling, 2007, 32: 575-587.
|
[100] |
ALONSO R, SHUSTER M D. Centering and observability in attitude independent magnetometer bias determination[J]. The journal of the astronautical sciences, 2003, 51(2): 133-141.
|
[101] |
李青竹, 李志宁, 张英堂, 等. 磁梯度张量系统的非线性集成矢量校正[J]. 武汉大学学报(信息科学版), 2019, 44(5): 714-722, 730.
|
|
LI Q Z, LI Z N, ZHANG Y T, et al. Integrated vector calibration of magnetic gradient tensor system using nonlinear method[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5):714-722, 730. (in Chinese)
|
[102] |
王振雄, 张琦, 潘孟春, 等. 基于粒子群算法的地磁矢量测量系统一体化校正[J]. 中国测试, 2022, 48(6): 13-17, 25.
|
|
WANG Z X, ZHANG Q, PAN M C, et al. Comprehensive calibration of geomagnetic vector measurement system based on PSO[J]. China Measurement & Test, 2022, 48(6): 13-17, 25. (in Chinese)
|
[103] |
徐祥, 刘铭, 曹国灿, 等. 基于自适应参数估计的三轴磁传感器实时校正方法[J]. 中国惯性技术学报, 2019, 27(3): 384-389.
|
|
XU X, LIU M, CAO G C, et al. Real-time calibration method for three-axis magnetometer based on adaptive parameter estimation[J]. Journal of Chinese Inertial Technology, 2019, 27(3): 384-389. (in Chinese)
|
[104] |
罗静博, 陈浩, 赵苗, 等. 基于改进型入侵野草算法的三轴磁传感器非正交误差校正[J]. 兵工学报, 2019, 40(12): 2513-2518.
doi: 10.3969/j.issn.1000-1093.2019.12.016
|
|
LUO J B, CHEN H, ZHAO M, et al. Non-orthogonal error correction of three-axis magnetic sensor based on improved IWO algorithm[J]. Acta Armamentarii, 2019, 40(12): 2513-2518. (in Chinese)
doi: 10.3969/j.issn.1000-1093.2019.12.016
|
[105] |
高全明. 固定翼无人机航磁三分量系统误差校正与干扰补偿技术研究[D]. 长春: 吉林大学, 2020.
|
|
GAO Q M. Research on system error calibration and interference compensation technology of aeromagnetic three-component survey based on fixed-wing UAV[D]. Changchun: Jilin University, 2020. (in Chinese)
|
[106] |
CRASSIDIS J L, LAI K L. Real-time attitude-independent three-axis magnetometer calibration[J]. Journal of guidance of control and dynamics, 2005, 28: 115-120.
|
[107] |
吴德会, 黄松岭, 赵伟. 基于FLANN 的三轴磁强计误差校正研究[J]. 仪器仪表学报, 2009, 30(3): 449-453.
|
|
WU D H, HUANG S L, ZHAO W. Research correction of tri-axiamagnemeter based on FLANN[J]. Chinese Journal of Scientific Instrument, 2009, 30(3): 449-453. (in Chinese)
|
[108] |
魏祎. 基于MEMS惯性传感器的磁力计校准技术研究[D]. 北京: 北京邮电大学, 2020.
|
|
WEI W. Research on magnetometer calibration technology based on MEMS inertial sensors[D]. Beijing: Beijing University of Posts and Telecommunications, 2020. (in Chinese)
|
[109] |
张海波, 翟晶晶, 李享, 等. 一种用于磁场复现和屏蔽的磁干扰主动补偿技术[J]. 宇航计测技术, 2021, 41(3):68-72.
|
|
ZHANG H B, ZHAI J J, LI X, et al. An active compensation method of enviromental interference magnetic field for magnetic field reproduction and shielding[J]. Journal of Astronautic Metrology and Measurement, 2021, 41(3): 68-72. (in Chinese)
|
[110] |
DAI J L, MENG L F, HUANG K, et al. Research on magnetic characteristics of small UAV for aeromagnetic measurement[J]. IOP Conference Series: Earth and Environmental Science, 2019, 310(3): 032068.
|
[111] |
HAN Q, DOU Z J, TONG X J, et al. A modified Tolles-Lawson model robust to the errors of the three-axis strapdown magnetometer[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(3): 334-338.
|
[112] |
于振涛, 吕俊伟, 毕波, 等. 四面体磁梯度张量系统的载体磁干扰补偿方法[J]. 物理学报, 2014, 63(11): 110702.
|
|
YU Z T, LÜ J W, BI B, et al. A vehicle magnetic noise compensation method for the tetrahedron magnetic gradiometer[J]. Acta Physica Sinica, 2014, 63(11): 110702. (in Chinese)
|
[113] |
孙宇慧. 基于优化BP神经网络的磁补偿算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
|
|
SUN Y H. Research on magnetic compensation Algorithm based on optimized BP neural network[D]. Harbin:Harbin Institute of Technology, 2018. (in Chinese)
|
[114] |
吕辰, 张晓明, 檀杰, 等. 基于遗忘因子递推最小二乘的无人机在线磁补偿技术研究[J]. 传感技术学报, 2018, 31(2): 218-222.
|
|
LV C, ZHANG X M, TAN J, et al. Research of on-line magnetic compensation technology for UAV based on forgetting factor and RLS[J]. Chinese Journal of Sensors and Actuators, 2018, 31(2): 218-222. (in Chinese)
|
[115] |
于彩霞, 魏文博, 景建恩, 等. 希尔伯特-黄变换在海底大地电磁测深数据处理中的应用[J]. 地球物理学进展, 2010, 25(3): 1046-1056.
|
|
YU C X, WEI W B, JING J E, et al. Application of Hilbert-Huang transformation to marine magnetotelluric sounding data processing[J]. Progress in Geophysics, 2010, 25(3): 1046-1056. (in Chinese)
|
[116] |
KONSTANTIN D, DOMINIQUE Z. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62: 531-544.
|
[117] |
李金朋, 任国全, 张英堂, 等. 改进二维变分模态分解的磁源分离[J]. 光学精密工程, 2020, 28(5):1200-1211.
|
|
LI J P, REN G Q, ZHANG Y T, et al. Source separation based on improved two-dimensional variational mode decomposition[J]. Optics and Precision Engineering, 2020, 28(5):1200-1211. (in Chinese)
|
[118] |
胡佃波, 焦磊明, 庞曦. 基于VMD的大地电磁信号去噪研究[J]. 能源与环保, 2020, 42(5): 72-77.
|
|
HU D B, JIAO L M, PANG X. Research on denoising of magnetotelluric signal based on VMD[J]. China Energy and Environmental Protection, 2020, 42(5): 72-77. (in Chinese)
|
[119] |
DEL N C, GRECO F, NAPOLI R, et al. Denoising gravity and geomagnetic signals from Etna volcano (Italy) using multivariate methods[J]. Nonlinear Processes in Geophysics, 2008, 15(5): 735-749.
|
[120] |
谢凡, 滕云田, 徐平. 应用独立分量分析方法提取和剥离地磁观测中的轨道交通干扰[J]. 地球物理学进展, 2011, 26(5):1824-1831.
|
|
XIE F, TENG Y T, XU P. Removal of EM interference generated by urban railway transit from geomagnetic observation by ICA method[J]. Progress in Geophysics, 2011, 26(5): 1824-1831. (in Chinese)
|
[121] |
谢凡, 滕云田, 胡星星. 数学形态滤波在地磁数据干扰抑制中的应用[J]. 地球物理学进展, 2011, 26(1): 147-156.
|
|
XIE F, TENG Y T, HU X X. Application of mathematical morphology-based filter in denoising geomagnetic data[J]. Progress in Geophysics, 2011, 26(1): 147-156. (in Chinese)
|
[122] |
李季, 潘孟春, 唐莺, 等. 基于形态滤波和HHT的地磁信号分析与预处理[J]. 仪器仪表学报, 2012, 33(10):2175-2180.
|
|
LI J, PAN M C, TANG Y, et al. Analysis and preprocessing of geomagnetic signals based on morphological filter and Hilbert-Huang transform[J]. Chinese Journal of Scientific Instrument, 2012, 33(10):2175-2180. (in Chinese)
|
[123] |
陈海龙, 王长龙, 左宪章, 等. 磁记忆梯度张量测量信号预处理方法[J]. 系统工程与电子技术, 2017, 39(3): 488-493.
|
|
CHEN H L, WANG C L, ZUO X Z, et al. Metal magnetic memory gradient tensor signal processing method[J]. Systems Engineering and Electronics, 2017, 39(3): 488-493. (in Chinese)
doi: 10.3969/j.issn.1001-506X.2017.03.05
|
[124] |
王海军, 邵宝武, 王海燕, 等. 基于数学形态学和Hough变换的高分辨率遥感影像道路提取[J]. 地理信息世界, 2018, 25(2):108-112.
|
|
WANG H J, SHAO B W, WANG H Y, et al. Road extraction using high resolution remote sensing image based on mathematical morphology[J]. Geomatics World, 2018, 25(2):108-112. (in Chinese)
|
[125] |
郑华林, 王超, 潘盛湖, 等. 基于EEMD和分层阈值的磁记忆信号降噪方法研究[J]. 工程设计学报, 2020, 27(4): 433-440.
|
|
ZHENG H L, WANG C, PAN S H, et al. Research on noise reduction method of magnetic memory signal based on EEMD and layered threshold[J]. Chinese Journal of Engineering Design, 2020, 27(4): 433-440. (in Chinese)
|
[126] |
张朝阳, 肖昌汉, 高俊吉, 等. 磁性物体磁偶极子模型适用性的试验研究[J]. 应用基础与工程科学学报, 2010, 18(5): 862-868.
|
|
ZHANG C Y, XIAO C H, GAO J J, et al. Experiment research of magnetic dipole model applicability for a magnetic object[J]. Journal of Basic Science and Engineering, 2010, 18 (5): 862-868. (in Chinese)
|
[127] |
FAN L M, KANG X Y, ZHENG Q, et al. A fast linear algorithm for magnetic dipole localization using total magnetic field gradient[J]. IEEE Sensors Journal, 2017, 18(3): 1032-1038.
|
[128] |
贾文抖, 林春生, 孙玉绘, 等. 基于单个磁梯度计的磁目标定位方法研究[J]. 兵工学报, 2017, 38(8):1572-1577.
doi: 10.3969/j.issn.1000-1093.2017.08.015
|
|
JIA W D, LIN C S, SUN Y H, et al. Research on magnetic target location method based on a single magnetic gradiometer[J]. Acta Armamentarii, 2017, 38(8): 1572-1577. (in Chinese)
|
[129] |
NARA T, SUZUKI S, ANDO S. A closed-form formula for magnetic dipole localization by measurement of its magnetic field and spatial gradients[J]. IEEE transactions on magnetics, 2006, 42(10): 3291-3293.
|
[130] |
CLARK D A. Corrigendum to: New methods for interpretation of magnetic vector and gradient tensor data I: eigenvector analysis and the normalised source strength[J]. Exploration Geophysics, 2014, 45(4): 324-324.
|
[131] |
LIU K, SUI Y Y, CHENG H, et al. Magnetic dipole moment determination using near-field magnetic gradient tensor data[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 18(7): 1169-1173.
|
[132] |
刘继昊, 李夕海, 曾小牛. 基于两点磁梯度张量的磁性目标在线定位方法[J]. 地球物理学报, 2017, 60(10): 3995-4004.
doi: 10.6038/cjg20171026
|
|
LIU J H, LI X H, ZENG X N. Online magnetic target location method based on the magnetic gradient tensor of two points[J]. Chinese Journal of Geophysics, 2017, 60(10): 3995-4004. (in Chinese)
|
[133] |
李青竹, 李志宁, 张英堂, 等. 张量衍生不变关系下的磁源单点定位[J]. 光学精密工程, 2019, 27(8):1880-1893.
|
|
LI Q Z, LI Z N, ZHANG Y T, et al. Magnetic source single-point positioning by tensor derivative invariant relations[J]. Optics and Precision Engineering, 2019, 27(8): 1880-1893. (in Chinese)
|
[134] |
李青竹, 李志宁, 张英堂, 等. 基于二阶磁张量欧拉反褶积的磁源单点定位方法[J]. 石油地球物理勘探, 2019, 54(4): 915-924.
|
|
LI Q Z, LI Z N, ZHANG Y T, et al. Magnetic source single-point positioning based on second-order magnetic tensor Euler deconvolution[J]. Oil Geophysical Prospecting, 2019, 54(4): 915-924. (in Chinese)
|
[135] |
HANSEN R O, SIMMONDS M. Multiple-source Werner deconvolution[J]. Geophysics, 1993, 58(12): 1792-1800.
|
[136] |
HANSEN R O. 3D multiple-source Werner deconvolution for magnetic data[J]. Geophysics, 2005, 70(5): L45-L51.
|
[137] |
王林飞, 郭灿灿, 薛典军, 等. 磁梯度张量解析信号分析法及其在场源位置识别中的应用[J]. 地球物理学进展, 2016, 31(3):1164-1172.
|
|
WANG L F, GUO C C, XUE D J, et al. Analytic signals of magnetic gradient tensor and their application to estimate source location[J]. Progress in Geophysics, 2016, 31(3): 1164-1172. (in Chinese)
|
[138] |
李金朋, 张英堂, 范红波, 等. 基于磁传感器阵列的多磁源参数反演方法[J]. 仪器仪表学报, 2019, 40(10):28-37.
|
|
LI J P, ZHANG Y T, FAN H B, et al. Multi-magnetic source parameter inversion method based on magnetic sensor array[J]. Chinese Journal of Scientific Instrument, 2019, 40(10):28-37. (in Chinese)
|
[139] |
UGALDE H, MORRIS W A. Cluster analysis of Euler deconvolution solutions: new filtering techniques and geologic strike determination[J]. Geophysics, 2010, 75(3): L61-L70.
|
[140] |
REN M, LIU P Y, WANG Z H, et al. A self-adaptive fuzzy c-means algorithm for determining the optimal number of clusters[J]. Computational Intelligence and Neuroscience, 2016, 2016: 2647389.
|
[141] |
YIN G, ZHANG Y T, FAN H B, et al. Automatic detection of multiple UXO-like targets using magnetic anomaly inversion and self-adaptive fuzzy c-means clustering[J]. Exploration geophysics, 2017, 48(1): 67-75.
|
[142] |
ZHOU Z J, ZHANG M, CHEN J F. A new multiple magnetic targets location method in 3D space[C]// SEG Technical Program Expanded Abstracts 2020. Online: Society of Exploration Geophysicists, 2020: 974-978.
|
[143] |
李青竹, 李志宁, 石志勇, 等. AFCM聚类和张量不变量用于磁源多目标定位[J]. 光学精密工程, 2022, 30(20): 2523-2537.
|
|
LI Q Z, LI Z N, SHI Z Y, et al. Multi-target magnetic positioning with the adaptive fuzzy c-means clustering and tensor invariants[J]. Optics and Precision Engineering, 2022, 30(20): 2523-2537. (in Chinese)
|
[144] |
HELBIG K. Some integrals of magnetic anomalies and their relation to the parameters of the disturbing body[J]. Zeitschrift fur Geophysik, 1963, 29(2): 83-96.(in Germany)
|
[145] |
SCHMIDT P W, CLARK D A. The calculation of magnetic components and moments from TMI: a case study from the Tuckers igneous complex, Queensland[J]. Exploration Geophysics, 1998, 29(4): 609-614.
|
[146] |
PHILLIPS J D. Can we estimate total magnetization directions from aeromagnetic data using Helbig’s integrals?[J]. Earth, Planets and Space, 2005, 57(8): 681-689.
|
[147] |
LI Q Z, LI Z N, SHI Z Y, et al. Application of Helbig integrals to magnetic gradient tensor multi-target detection[J]. Measurement, 2022, 200: 111612.
|
[148] |
DAVIS K, LI Y, NABIGHIAN M. Automatic detection of UXO magnetic anomalies using extended Euler deconvolution[J]. Geophysics, 2010, 75(3): G13-G20.
|
[149] |
SONG S, HU C, MENG M Q H. Multiple objects positioning and identification method based on magnetic localization system[J]. IEEE Transactions on Magnetics, 2016, 52(10): 9600204.
|
[150] |
MILLER H G, SINGH V. Potential field tilt-a new concept for location of potential field sources[J]. Journal of Applied Geophysics, 1994, 32(2/3): 213-217
|
[151] |
LI J P, ZHANG Y T, FAN H B, et al. Estimating the location of magnetic sources using magnetic gradient tensor data[J]. Exploration Geophysics, 2019, 50(6): 600-612.
|
[152] |
GEROVSKA D, ARAUZO-BRAVO M J, STAVREV P. Determination of the parameters of compact ferro-metallic objects with transforms of magnitude magnetic anomalies[J]. Journal of Applied Geophysics, 2004, 55(3/4): 173-186.
|
[153] |
BEIKI M, CLARK D A, AUSTIN J R, et al. Estimating source location using normalized magnetic source strength calculated from magnetic gradient tensor data[J]. Geophysics, 2012, 77(6): J23-J37.
|
[154] |
马国庆, 李丽丽, 杜晓娟. 磁张量数据的边界识别和解释方法[J]. 石油地球物理勘探, 2012, 47(5): 815-821, 844, 682.
|
|
MA G Q, LI L L, DU X J. Boundary detection and interpretation by magnetic gradient tensordata[J]. Oil Geophysical Prospecting, 2012, 47(5): 815-821, 844, 682. (in Chinese)
|
[155] |
CLARK D A. New methods for interpretation of magnetic vector and gradient tensor data II: application to the Mount Leyshon anomaly, Queensland, Australia[J]. Exploration Geophysics, 2013, 44(2): 114-127.
|
[156] |
ZHANG J H, MA W W, LIN J W, et al. Fault diagnosis approach for rotating machinery based on dynamic model and computational intelligence[J]. Measurement, 2015, 59: 73-87.
|
[157] |
ZHENG J Y, FAN H B, YIN G, et al. A method of using geomagnetic anomaly to recognize objects based on HOG and 2D-AVMD[J]. AIP Advances, 2019, 9(7): 075015.
|
[158] |
JAIN A K, DUIN R P W, MAO J. Statistical pattern recognition: a review[J]. IEEE Transactions on pattern analysis and machine intelligence, 2000, 22(1): 4-37.
|
[159] |
HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1/2/3): 489-501.
|
[160] |
SNYDSMAN W E, AMINZADEH F, WEIL C B. Pattern recognition in geophysical exploration[J]. Proceedings of SPIE, 1987, 768: 53-60.
|
[161] |
RAICHE A. A pattern recognition approach to geophysical inversion using neural nets[J]. Geophysical Journal International, 1991, 105(3): 629-648.
|
[162] |
ROSATI I, CARDARELLI E. Statistical pattern recognition technique to enhance anomalies in magnetic surveys[J]. Journal of Applied Geophysics, 1997, 37(2):55-66.
|
[163] |
CARLOS C M, SEN M K, STOFFA P L. Artificial neural networks for parameter estimation in geophysics[J]. Geophysical Prospecting, 2000, 48(1): 21-47.
|
[164] |
FERNANDEZ J P, BARROWES B, O’NEILL K, et al. Evaluation of SVM classification of metallic objects based on a magnetic-dipole representation[J]. Proceedings of SPIE, 2006, 6217: 621703.
|
[165] |
TURLAPATY A C, ANANTHARAJ V G, YOUNAN N H. A pattern recognition based approach to consistency analysis of geophysical datasets[J]. Computers & Geosciences, 2010, 36(4): 464-476.
|
[166] |
EHRET B. Pattern recognition of geophysical data[J]. Geoderma, 2010, 160(1): 111-125.
|
[167] |
AL-GARNI M A. Interpretation of magnetic anomalies due to dipping dikes using neural network inversion[J]. Arabian Journal of Geosciences, 2015, 8(10): 8721-8729.
|
[168] |
谢永茂. 基于模板匹配的局部磁异常识别方法[D]. 北京: 中国地质大学(北京), 2012.
|
|
XIE Y M. Recognition of magnetic local anomaly based on template matching[D]. Beijing: China University of Geosciences (Beijing), 2012. (in Chinese)
|
[169] |
李昌珑, 李宗超, 吕红山, 等. 基于三维图像模式识别的西藏东南部地震灾害损失风险评估[J]. 地球物理学报, 2019, 62(1):393-410.
|
|
LI C L, LI Z C, LÜ H S, et al. Seismic disaster loss risk assessment for southeastern Tibet based on 3D image pattern recognition[J]. Chinese Journal of Geophysics, 2019, 62(1): 393-410. (in Chinese)
|
[170] |
ZHENG J, FAN H, ZHANG Q, et al. Magnetic anomaly target recognition based on SVD and SVMs[J]. IEEE Transactions on Magnetics, 2019, 55(9): 6000708.
|
[171] |
ZHOU Z J, ZHANG M, CHEN J F, et al. Detection and classification of multi-magnetic targets using mask-RCNN[J]. IEEE Access, 2020, 8: 187202-187207.
|
[172] |
李青竹, 李志宁, 石志勇, 等. MGTS单航线测量用于磁性目标模式识别[J]. 光学精密工程, 2023, 31(6):872-891.
|
|
LI Q Z, LI Z N, SHI Z Y, et al. Single heading-line survey of MGTS for magnetic target pattern recognition[J]. Optics and Precision Engineering, 2023, 31(6):872-891. (in Chinese)
|