Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (5): 240358-.doi: 10.12382/bgxb.2024.0358
Previous Articles Next Articles
ZHAO Jie1, CAI Xiaowei2, WU Xiangqing1, JIAO Yanmei3, ZHANG Jun1,*(), HUANG Da1
Received:
2024-05-10
Online:
2025-05-07
Contact:
ZHANG Jun
CLC Number:
ZHAO Jie, CAI Xiaowei, WU Xiangqing, JIAO Yanmei, ZHANG Jun, HUANG Da. Numerical Study on Ice-breaking Load Characteristics of Underwater Vehicles[J]. Acta Armamentarii, 2025, 46(5): 240358-.
Add to citation manager EndNote|Ris|BibTeX
应变率/s-1 | 比例系数 | 应变率/s-1 | 比例系数 |
---|---|---|---|
1.0×10-9 | 0.270 | 1.0×10-2 | 1.220 |
1.0×10-8 | 0.336 | 1.0×10-1 | 1.520 |
1.0×10-7 | 0.417 | 1.0×100 | 1.890 |
1.0×10-6 | 0.520 | 1.0×101 | 2.348 |
1.0×10-5 | 0.643 | 1.0×102 | 2.910 |
1.0×10-4 | 0.800 | 1.0×103 | 3.620 |
1.0×10-3 | 1.000 |
Table 1 Strain rates and compressive yield stress scale factors of ice
应变率/s-1 | 比例系数 | 应变率/s-1 | 比例系数 |
---|---|---|---|
1.0×10-9 | 0.270 | 1.0×10-2 | 1.220 |
1.0×10-8 | 0.336 | 1.0×10-1 | 1.520 |
1.0×10-7 | 0.417 | 1.0×100 | 1.890 |
1.0×10-6 | 0.520 | 1.0×101 | 2.348 |
1.0×10-5 | 0.643 | 1.0×102 | 2.910 |
1.0×10-4 | 0.800 | 1.0×103 | 3.620 |
1.0×10-3 | 1.000 |
参数 | 空气 | 水 |
---|---|---|
密度/(kg·m-3) | 1.25 | 1000 |
网格数量 | 51597 | 512000 |
网格尺寸/mm | 2.5,2.5,3.8 | 2.5,2.5,3.2 |
单元类型 | Solid ALE | Solid ALE |
材料模型 | 009_NULL | 009_NULL |
截断压力/MPa | -10 | -10 |
状态方程 | LINEAR_POLYNOMIAL | GRUNEISEN |
Table 2 Material parameters of air and water
参数 | 空气 | 水 |
---|---|---|
密度/(kg·m-3) | 1.25 | 1000 |
网格数量 | 51597 | 512000 |
网格尺寸/mm | 2.5,2.5,3.8 | 2.5,2.5,3.2 |
单元类型 | Solid ALE | Solid ALE |
材料模型 | 009_NULL | 009_NULL |
截断压力/MPa | -10 | -10 |
状态方程 | LINEAR_POLYNOMIAL | GRUNEISEN |
参数 | 数值 |
---|---|
密度/(kg·m-3) | 7850 |
网格数量 | 552 |
网格尺寸/mm | 2.3,2.3,3.1 |
单元类型 | Solid |
材料模型 | 003_MAT_PLASTIC_KINEMATIC |
弹性模量/GPa | 211 |
剪切模量/GPa | 6 |
泊松比 | 0.3 |
屈服应力/MPa | 355 |
Table 3 Material parameters of cylinder
参数 | 数值 |
---|---|
密度/(kg·m-3) | 7850 |
网格数量 | 552 |
网格尺寸/mm | 2.3,2.3,3.1 |
单元类型 | Solid |
材料模型 | 003_MAT_PLASTIC_KINEMATIC |
弹性模量/GPa | 211 |
剪切模量/GPa | 6 |
泊松比 | 0.3 |
屈服应力/MPa | 355 |
网格类型 | 位移/mm | 相对 误差/% | |
---|---|---|---|
仿真结果 | 实验结果[ | ||
粗网格 | 185.3 | 201.2 | -8.0 |
中网格 | 194.2 | 201.2 | -3.5 |
细网格 | 195.2 | 201.2 | -3.0 |
Table 4 Comparison between calculated and experimental results[28] of displacement
网格类型 | 位移/mm | 相对 误差/% | |
---|---|---|---|
仿真结果 | 实验结果[ | ||
粗网格 | 185.3 | 201.2 | -8.0 |
中网格 | 194.2 | 201.2 | -3.5 |
细网格 | 195.2 | 201.2 | -3.0 |
参数 | 数值 |
---|---|
密度/(kg·m-3) | 4400 |
网格数量 | 135200 |
网格尺寸/mm | 1.9,1.9,0.25 |
单元类型 | Solid |
材料模型 | 003_MAT_PLASTIC_KINEMATIC |
弹性模量/GPa | 113 |
剪切模量/GPa | 4.71 |
泊松比 | 0.3 |
屈服应力/GPa | 1.01 |
Table 5 Material parameters of alloy plate
参数 | 数值 |
---|---|
密度/(kg·m-3) | 4400 |
网格数量 | 135200 |
网格尺寸/mm | 1.9,1.9,0.25 |
单元类型 | Solid |
材料模型 | 003_MAT_PLASTIC_KINEMATIC |
弹性模量/GPa | 113 |
剪切模量/GPa | 4.71 |
泊松比 | 0.3 |
屈服应力/GPa | 1.01 |
参数 | 数值 |
---|---|
密度/(kg·m-3) | 900 |
粒子数量 | 9328 |
粒子间距/mm | 1.1,1.1,1.1 |
单元类型 | SPH |
弹性模量/GPa | 9.0 |
泊松比 | 0.33 |
拉伸截断压力/MPa | 5.0 |
压缩截断压力/MPa | -0.433 |
材料模型 | 155_PLASTICITY_COMPRESSION_TENSION_EOS |
状态方程 | TABULATED_COMPACTION |
Table 6 Material parameters of ice
参数 | 数值 |
---|---|
密度/(kg·m-3) | 900 |
粒子数量 | 9328 |
粒子间距/mm | 1.1,1.1,1.1 |
单元类型 | SPH |
弹性模量/GPa | 9.0 |
泊松比 | 0.33 |
拉伸截断压力/MPa | 5.0 |
压缩截断压力/MPa | -0.433 |
材料模型 | 155_PLASTICITY_COMPRESSION_TENSION_EOS |
状态方程 | TABULATED_COMPACTION |
方案 | 接触力峰值/N | 相对误差/% | |
---|---|---|---|
仿真结果 | 实验结果[ | ||
1 | 10492.0 | 9576.9 | 9.6 |
2 | 9925.3 | 9576.9 | 3.6 |
3 | 9694.7 | 9576.9 | 1.2 |
Table 7 Comparisons of calculated and experimental results[29] of contact force
方案 | 接触力峰值/N | 相对误差/% | |
---|---|---|---|
仿真结果 | 实验结果[ | ||
1 | 10492.0 | 9576.9 | 9.6 |
2 | 9925.3 | 9576.9 | 3.6 |
3 | 9694.7 | 9576.9 | 1.2 |
参数 | 数值 |
---|---|
密度/(kg·m-3) | 7850 |
网格数量 | 2130 |
网格尺寸/cm | 3.6,3.6,6.2 |
单元类型 | Solid |
弹性模量/GPa | 210 |
泊松比 | 0.30 |
材料模型 | 003_PLASTIC_KINEMATIC |
Table 8 Material parameters of vehicle
参数 | 数值 |
---|---|
密度/(kg·m-3) | 7850 |
网格数量 | 2130 |
网格尺寸/cm | 3.6,3.6,6.2 |
单元类型 | Solid |
弹性模量/GPa | 210 |
泊松比 | 0.30 |
材料模型 | 003_PLASTIC_KINEMATIC |
工况 | 最大航行速度/(m·s-1) | 冰厚/cm |
---|---|---|
1 | 10 | 20 |
2 | 15 | 20 |
3 | 20 | 20 |
4 | 25 | 20 |
5 | 20 | 10 |
6 | 20 | 30 |
Table 9 Calculation conditions for different cases
工况 | 最大航行速度/(m·s-1) | 冰厚/cm |
---|---|---|
1 | 10 | 20 |
2 | 15 | 20 |
3 | 20 | 20 |
4 | 25 | 20 |
5 | 20 | 10 |
6 | 20 | 30 |
[1] |
俞同强, 刘昆, 刘俊杰, 等. 船-冰碰撞中考虑温度影响的冰体材料本构模型研究[J]. 船舶力学, 2023, 27(2): 250-259.
|
|
|
[2] |
|
[3] |
许育文, 顾学康, 赵南, 等. 极地船舶冰载荷研究方法综述[J]. 装备环境工程, 2023, 20(9): 26-40.
|
|
|
[4] |
吴鸿乾, 张韧, 闫恒乾, 等. 气候变化背景下北极潜艇冰区航行风险评估与实验区划[J]. 指挥控制与仿真, 2021, 43(2): 91-97.
doi: 10.3969/j.issn.1673-3819.2021.02.016 |
|
|
[5] |
曹晶, 王刚. 极地船舶规范及其主要技术发展[J]. 船舶, 2023, 34(1): 61-71.
|
|
|
[6] |
|
[7] |
赵伟航. 典型浮体垂向破冰载荷模拟研究[D]. 北京: 中国舰船研究院, 2023.
|
|
|
[8] |
岳军政, 吴先前, 黄晨光. 航行器出水破冰的多场耦合效应与相似律[J]. 力学学报, 2021, 53(7): 1930-1939.
|
|
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
汪春辉, 王嘉安, 王超, 等. 基于S-ALE方法的圆柱体垂直出水破冰研究[J]. 力学学报, 2021, 53(11): 3110-3123.
|
|
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
郑兴, 田治宗, 谢志刚, 等. 基于SPH方法的黄河破冰船冰阻力数值模拟分析[J]. 中国舰船研究, 2022, 17(3): 49-57, 84.
|
|
|
[26] |
|
[27] |
|
[28] |
张伟, 郭子涛, 肖新科, 等. 弹体高速入水特性实验研究[J]. 爆炸与冲击, 2011, 31(6): 579-584.
|
|
|
[29] |
|
[1] | LI Pengfei, XIA Hongli, HOU Chuanyu, ZHOU Yuqi, MIAO Haibin. The Virtual Test of Impact Damage on Weapon SystemBased on SPH Numerical Simulation Method [J]. Acta Armamentarii, 2024, 45(S2): 208-214. |
[2] | YANG Zehuan, ZHANG Xianfeng, LIU Chuang, TAN Mengting, XIONG Wei. Theoretical Model for Impact Load of Kinetic Energy Missile [J]. Acta Armamentarii, 2024, 45(S1): 20-32. |
[3] | JIN Wen, JIANG Jianwei, MEN Jianbing, LI Mei, LI Haifeng, ZHOU Xin. Investigation on Dynamic Response Characteristic of the Confined Powder under Impact Loading [J]. Acta Armamentarii, 2024, 45(S1): 183-190. |
[4] | YANG Zhenhuan, YUAN Ye, LIU Xin, QU Jia. Numerical Simulation on the Effects of Initiation Methods on the Initial Movement of Fuel Dispersal in a Frustum-shaped FAE Device [J]. Acta Armamentarii, 2024, 45(9): 3071-3081. |
[5] | YANG Guanxia, WU Haijun, TIAN Ze, DONG Heng, HUANG Fenglei. Impact Load Characteristic and Regulation Mechanism of Metal/polyurethane Waveform Generator Composite Projectile [J]. Acta Armamentarii, 2024, 45(5): 1648-1662. |
[6] | TAO Zihao, LI Xianglong, HU Qiwen, WANG Jianguo. Study and Analysis on Numerical Simulation of Empty Hole Effect Induced by Cutting Blasting [J]. Acta Armamentarii, 2024, 45(12): 4246-4258. |
[7] | HOU Xiayi, HU Jun, YU Yong. Finite Mass Inflation and Wake Recontact Phenomenon of Cross Parachutes [J]. Acta Armamentarii, 2024, 45(11): 3915-3925. |
[8] | LIU Xiangyan, YU Nan, HUANG Zhengui, CHEN Zhihua, MA Changsheng, QIU Rongxian. Characteristics of Fluid-structure Interaction of High-speed Projectile at Different Angles of Attack during Water Entry [J]. Acta Armamentarii, 2024, 45(10): 3415-3429. |
[9] | JI Xinbo, LU Weijian, LÜ Chen, WANG Xi, LIAN Zheng, HE Li. Dynamic Deflection Response of Typical Pavement Structure under Different Impact Loads [J]. Acta Armamentarii, 2024, 45(1): 299-311. |
[10] | LIU Bing, CHENG Dong, LU Bingju, CHEN Xiaohan, LE Guigao. Modeling and Simulation of Transmedia Separation of Missile Ejected from Carrier with Adapter [J]. Acta Armamentarii, 2023, 44(5): 1237-1250. |
[11] | WANG Jirui, WANG Chengxin, WANG Yini, TANG Kui, BO Qile. Equivalent Strength of Armour Steel against High-velocity Penetration of Long-rod Projectile [J]. Acta Armamentarii, 2023, 44(12): 3755-3770. |
[12] | SHANG Yulu, XU Xuan, ZHANG Di, YANG Jun. The Loading Discrepancies in CONWEP and Fluid-structure Interaction Methods and the Dynamic Response Characteristics of Masonry Wall [J]. Acta Armamentarii, 2023, 44(12): 3897-3908. |
[13] | LIANG Zhi-qiang, TIAN Meng, WANG Qiu-yan, WANG Xi-bin,. Simulation Investigation on Crack Initiation and Propagation in Ultrasonic Assisted Grinding of Ceramics Material [J]. Acta Armamentarii, 2016, 37(5): 895-902. |
[14] | YAN Qing-dong, LIU Bo-shen, WEI Wei. Pressure Load Fluctuation Analysis of Torque Converter Based on Fluid-structure Interaction [J]. Acta Armamentarii, 2016, 37(4): 577-583. |
[15] | TANG Jian-hua,QIAN Lin-fang,XU Ya-dong. Fluid-structure Interaction Modelling of Airdrop Cargo Platform Swinging [J]. Acta Armamentarii, 2016, 37(1): 141-148. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||