Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (S1): 262-270.doi: 10.12382/bgxb.2024.0508
Previous Articles Next Articles
LI Zhong1, GUAN Xiaorong1,2,*(), LI Huibin1, HE Long1,2, LONG Yi2,3
Received:
2024-06-27
Online:
2024-11-06
Contact:
GUAN Xiaorong
CLC Number:
LI Zhong, GUAN Xiaorong, LI Huibin, HE Long, LONG Yi. Research Status and Key Technology Analysis of Active Rigid Lower Limb Assisted Exoskeleton[J]. Acta Armamentarii, 2024, 45(S1): 262-270.
Add to citation manager EndNote|Ris|BibTeX
外骨骼 | 自由度 | 驱动自由度 | 驱动方式 | 参考来源 |
---|---|---|---|---|
BLEEX | HF-HA-HR-KF-AF-AA-AR | HF-HA-KF-AF | 液压 | 文献[ |
XOS-2 | — | — | 液压 | 文献[ |
ONYX | — | KF | 电机 | 文献[ |
HAL-5-B | HF-KF-AF | HF-KF | 电机 | 文献[ |
HEXAR | HF-HA-HR-KF-AF-AA-AR | HF-KF | 电机 | 文献[ |
HUMA | HF-HA-HR-KF-AF-AA | HF-KF | 电机 | 文献[ |
BE | HF-HA-HR-KF-AF-AA | HF-HA-HR-KF-AF-AA | 电机 | 文献[ |
LB-AXO | HF-HA-HR-KF-AF-AA | HF-KF | 电机 | 文献[ |
WPAL | HF-HA-HR-KF-AF-AA | HF-KF | 电机 | 文献[ |
华东理工 | HF-HA-HA-HR-KF-AF-AA | KF | 液压 | 文献[ |
HIT-LEX | HF-HA-HR-KF-AF-AA | HF-HA-KF | 电机 | 文献[ |
APAL | HF-HA-HR-KF-AF-AA | HF-KF | 液压 | 文献[ |
中科大 | HF-HA-KF-AF | HF-HA-KF | 电机 | 文献[ |
BES-PRO | — | HF-KF | 电机 | 文献[ |
Table 1 Configuration and driving comparison of active rigid lower limb assisted exoskeletons
外骨骼 | 自由度 | 驱动自由度 | 驱动方式 | 参考来源 |
---|---|---|---|---|
BLEEX | HF-HA-HR-KF-AF-AA-AR | HF-HA-KF-AF | 液压 | 文献[ |
XOS-2 | — | — | 液压 | 文献[ |
ONYX | — | KF | 电机 | 文献[ |
HAL-5-B | HF-KF-AF | HF-KF | 电机 | 文献[ |
HEXAR | HF-HA-HR-KF-AF-AA-AR | HF-KF | 电机 | 文献[ |
HUMA | HF-HA-HR-KF-AF-AA | HF-KF | 电机 | 文献[ |
BE | HF-HA-HR-KF-AF-AA | HF-HA-HR-KF-AF-AA | 电机 | 文献[ |
LB-AXO | HF-HA-HR-KF-AF-AA | HF-KF | 电机 | 文献[ |
WPAL | HF-HA-HR-KF-AF-AA | HF-KF | 电机 | 文献[ |
华东理工 | HF-HA-HA-HR-KF-AF-AA | KF | 液压 | 文献[ |
HIT-LEX | HF-HA-HR-KF-AF-AA | HF-HA-KF | 电机 | 文献[ |
APAL | HF-HA-HR-KF-AF-AA | HF-KF | 液压 | 文献[ |
中科大 | HF-HA-KF-AF | HF-HA-KF | 电机 | 文献[ |
BES-PRO | — | HF-KF | 电机 | 文献[ |
方法 | 预编程 | 直接力 反馈 | 地面力 反馈 | 零力矩点 控制法 | 肌电信号 控制法 | 操作者 控制 | 主从控制 | 灵敏度 放大 | 虚拟力 控制 |
---|---|---|---|---|---|---|---|---|---|
适应不同操作者 | 2 | 3 | 2 | 1 | 1 | 5 | 1 | 1 | 5 |
执行不同动作 | 1 | 5 | 5 | 5 | 2 | 1 | 5 | 3 | 5 |
控制器稳定性 | 2 | 5 | 2 | 5 | 1 | 1 | 5 | 1 | 3 |
人机工程学 | 5 | 2 | 4 | 2 | 5 | 5 | 2 | 4 | 4 |
非强加于人 | 5 | 2 | 3 | 2 | 2 | 1 | 1 | 5 | 5 |
研发速度 | 4 | 2 | 3 | 3 | 1 | 4 | 2 | 3 | 5 |
测人传感器少 | 5 | 2 | 3 | 1 | 1 | 3 | 2 | 1 | 5 |
测外骨骼传感器少 | 4 | 3 | 1 | 1 | 3 | 3 | 4 | 1 | 1 |
硬件复杂性低 | 5 | 2 | 2 | 3 | 5 | 5 | 1 | 2 | 4 |
计算需求量低 | 3 | 3 | 1 | 4 | 2 | 5 | 4 | 5 | 2 |
Table 2 Evaluation of exoskeleton control methods
方法 | 预编程 | 直接力 反馈 | 地面力 反馈 | 零力矩点 控制法 | 肌电信号 控制法 | 操作者 控制 | 主从控制 | 灵敏度 放大 | 虚拟力 控制 |
---|---|---|---|---|---|---|---|---|---|
适应不同操作者 | 2 | 3 | 2 | 1 | 1 | 5 | 1 | 1 | 5 |
执行不同动作 | 1 | 5 | 5 | 5 | 2 | 1 | 5 | 3 | 5 |
控制器稳定性 | 2 | 5 | 2 | 5 | 1 | 1 | 5 | 1 | 3 |
人机工程学 | 5 | 2 | 4 | 2 | 5 | 5 | 2 | 4 | 4 |
非强加于人 | 5 | 2 | 3 | 2 | 2 | 1 | 1 | 5 | 5 |
研发速度 | 4 | 2 | 3 | 3 | 1 | 4 | 2 | 3 | 5 |
测人传感器少 | 5 | 2 | 3 | 1 | 1 | 3 | 2 | 1 | 5 |
测外骨骼传感器少 | 4 | 3 | 1 | 1 | 3 | 3 | 4 | 1 | 1 |
硬件复杂性低 | 5 | 2 | 2 | 3 | 5 | 5 | 1 | 2 | 4 |
计算需求量低 | 3 | 3 | 1 | 4 | 2 | 5 | 4 | 5 | 2 |
[7] |
|
[8] |
US Army NSRDEC awards contract to Lockheed for ONYX exoskeleton[EB/OL]. (2018-11-30) [2024-04-08]. https://www.army-technology.com/news/nsrdec-lockheed-onyx-exoskeleton/.
|
[9] |
谢静. 美国《时代》杂志评选2005年度最佳发明[J]. 中国发明与专利, 2006(1):80-85.
|
|
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
The AUXSYS E1 Exoskeleton[EB/OL]. [2024-04-08]. https://www.auxsys.com/.
|
[18] |
|
[19] |
|
[20] |
|
[21] |
宋遒志, 王晓光, 王鑫, 等. 多关节外骨骼助力机器人发展现状及关键技术分析[J]. 兵工学报, 2016, 37(1): 172-185.
doi: 10.3969/j.issn.1000-1093.2016.01.025 |
|
|
[22] |
颉翔宇, 周利坤, 司玉昌. 军用动力外骨骼的发展现状及关键技术综述[J]. 兵工自动化, 2022, 41(10): 14-20.
|
|
|
[23] |
|
[24] |
孙建, 余永, 葛运建, 等. 基于接触力信息的可穿戴型下肢助力机器人传感系统研究[J]. 中国科学技术大学学报, 2008(12):1432-1438.
|
|
|
[1] |
Exoskeleton market size, share & trends analysis report by mobility (mobile, fixed/stationary), by technology (pow-ered, non-powered), by extremity, by structure, by end-use, by region, and segment forecasts, 2024—2030:GVR-1-68038-071-2[R/OL]. (2024-01-31) [2024-04-09]. https://www.grandviewresearch.com/industry-analysis/exoskeleton-market.
|
[2] |
孙晓强, 于旭东. 下肢外骨骼机器人步态识别系统综述[J]. 人工智能, 2024(1):66-80.
|
|
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[25] |
归丽华, 杨智勇, 顾文锦, 等. 能量辅助骨骼服NAEIES的开发[J]. 海军航空工程学院学报, 2007, 22(4): 467-470.
|
|
|
[26] |
陈法权, 樊军. 助力下肢外骨骼研究现状及关键技术分析[J]. 机床与液压, 2020, 48(20):155-160.
doi: 10.3969/j.issn.1001-3881.2020.20.037 |
|
|
[27] |
朱钧. 基于人机交互的负重型下肢外骨骼关键技术研究[D]. 上海: 华东理工大学, 2017.
|
|
|
[28] |
|
[29] |
张超. 下肢助力外骨骼机器人研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
|
|
|
[30] |
|
[31] |
|
[32] |
葛水平, 杨陈君, 陈耀凯. 单兵外骨骼装备技术简介[J]. 中国新技术新产品, 2016(14):6-7.
|
|
|
[33] |
李俊邑, 赵毅阳, 张豪, 等. 助行外骨骼机器人研究现状及发展趋势[J]. 医疗卫生装备, 2023, 44(2):96-106.
|
|
|
[34] |
傲鲨智能, BES-PRO下肢外骨骼机器人[EB/OL]. [2024-03-28]. https://www.ulsrobotics.com/h-col-117.html.
|
ULS robotics, BES-PRO lower limb exoskeleton robot[EB/OL]. [2024-03-28]. https://www.ulsrobotics.com/h-col-117.html. (in Chinese)
|
|
[35] |
张学群. 外骨骼机器人随动助力技术(SAT)研究与实验平台开发[D]. 杭州: 浙江大学, 2019.
|
|
|
[36] |
贺磊. 拓展人体运动和负重能力的穿戴式机器人设计原理与方法[D]. 武汉: 华中科技大学, 2020.
|
|
|
[37] |
王存金. 基于被动动态行走理论的下肢助力外骨骼研究[D]. 南京: 东南大学, 2022.
|
|
|
[38] |
李杨. 助力型人体下肢外骨骼理论分析与实验研究[D]. 南京: 南京理工大学, 2017.
|
|
|
[39] |
|
[40] |
|
[41] |
|
[42] |
龙亿. 下肢外骨骼人体运动预测与人机协调控制技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
|
|
|
[43] |
doi: 10.1038/nrn939 pmid: 12360322 |
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
杨智勇, 张静, 归丽华, 等. 外骨骼机器人控制方法综述[J]. 海军航空工程学院学报, 2009(5):520-526.
|
|
|
[49] |
|
[50] |
潘大雷. 混联下肢外骨骼的步态规划与控制研究[D]. 上海: 上海交通大学, 2015.
|
|
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[1] | YU Jiaxin, LI Weibing, LI Junbao, BI Weixin, LUO Yusong. The Influence of Multi-layer Explosion-proof Structure on the Energy Output of Power Controllable Warhead [J]. Acta Armamentarii, 2024, 45(S1): 33-42. |
[2] | YANG Zhengjiu, ZHU Kaiyu, WANG Chong. Development Trends of Fire Control Systems for Firearms [J]. Acta Armamentarii, 2024, 45(S1): 349-353. |
[3] | GUO Chengbao, WANG Wenjing, TAI Ziyan. Calibration of Underwater Magnetic Sensor Array Using Magnetic Field Difference [J]. Acta Armamentarii, 2024, 45(S1): 1-9. |
[4] | SU Chenghai, WANG Zhong, MA Hongbing, ZHENG Yuanfeng, WANG Haifu. Dynamic Damage Characteristics of Composite Concrete Structure Subjected to Reactive Jet [J]. Acta Armamentarii, 2024, 45(S1): 135-146. |
[5] | WANG Jin, LIU Yize, ZHANG Hongyu, YAN Yueguang, WANG Haifu, GE Chao. Dispersion Characteristics and Rule of Fragments of Linear Focusing Fragment Warhead [J]. Acta Armamentarii, 2024, 45(S1): 161-173. |
[6] | LUO Cheng, FAN Chao, BI Yanqiang, SU Xinming, LIN Guiping. Research Progress on Thermally-induced Vibration of Large Deployable Space Structure [J]. Acta Armamentarii, 2024, 45(S1): 231-241. |
[7] | WANG Yeru, YANG Geng, LIU Shu, XU Xiao, CHEN Huajie, QIN Feiwei, XU Huajie. GCN-based Detection of Occluded Key Parts of Vehicle Target [J]. Acta Armamentarii, 2024, 45(S1): 242-251. |
[8] | JIANG Tengyao, LI Wei, LEI Yu, HU Xin, WANG Weiwei. Modeling and Resonance Suppression Method for Stabilizing-tracking System of Self-propelled Anti-aircraft Gun [J]. Acta Armamentarii, 2024, 45(9): 3029-3043. |
[9] | CHEN Qi, QIN Guoyang. Trajectory Tracking Control for Hybrid-driven Unmanned Underwater Vehicles with Free-flying and Crawling Dual-mode [J]. Acta Armamentarii, 2024, 45(9): 3216-3229. |
[10] | REN Xiaolei, LIU Hui, HAN Lijin, CHEN Qian, NIE Shida, XIE Jingshuo, CUI Shan. Dynamic Locomotion Control for Wheeled-legged Hybrid Platform in Complex Terrain [J]. Acta Armamentarii, 2024, 45(9): 2993-3003. |
[11] | KONG Xiangqing, LI Ruonan, CHANG Yahui, FU Ying. Numerical Simulation of Blast Resistance of Foam-filled Auxetic Honeycomb Sandwich Structures [J]. Acta Armamentarii, 2024, 45(9): 3091-3104. |
[12] | JIA Changzhi, SHEN Xiaolong, CHENG Yangyang, YI Yali, WU Menglei, JIN Herong. Emergency Configuration Design of Breechblock Firing Mechanism Based on Selective Laser Melting Technology [J]. Acta Armamentarii, 2024, 45(9): 3044-3055. |
[13] | LIU Jinrong, LI Wei. Non-magnetic Heating and High-precision Temperature Control of the Alkali-metal Vapor Cell in SERF Atomic Spin Gyroscope [J]. Acta Armamentarii, 2024, 45(9): 3288-3296. |
[14] | SHI Bo, CHEN Xi, LI Pengfei, HAN Ruoyu, QIN Sichao, HE Zhongzheng, SUN Haoyang. Ballistic Endpoint Ide.pngication Based on Projectile Rotation Characteristics and Fuze Full Ballistic Safety Control Method [J]. Acta Armamentarii, 2024, 45(9): 3105-3113. |
[15] | HU Yanyang, HE Fan, BAI Chengchao. Cooperative Obstacle Avoidance Decision Method for the Terminal Guidance Phase of Hypersonic Vehicles [J]. Acta Armamentarii, 2024, 45(9): 3147-3160. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||