[1] |
THORNTON E A. Thermal structures for aerospace applications[M]. Washington, DC, US: AIAA Education Series, 1996.
|
[2] |
BOLEY B A. Thermally induced vibrations of beams[J]. Journal of Aeronautical Sciences, 1956, 23(2): 179-181.
|
[3] |
BOLEY B A. Approximate analyses of thermally induced vibrations of beams and plates[J]. Journal of Applied Mechanics, 1972, 39(1):787-796.
|
[4] |
THORNTON E A, FOSTER R S. Dynamic response of rapidly heated space structures[J]. Computational Nonlinear Mechanics in Aerospace Engineering, AIAA Paper 92-2207-CP, 1992:1185-1203.
|
[5] |
XUE M D, DUAN J, XIANG Z H. Thermally-induced bending-torsion coupling vibration of largescale space structures[J]. Computational Mechanics, 2007, 40(4):707-723.
|
[6] |
FOSTER R S. Thermally induced vibrations of spacecraft booms[D]. Charlottesville, US: University of Virginia, 1998.
|
[7] |
FAN C, BI Y Q, WANG J, et al. Experimental investigation of heat flux characteristics on the thermally induced vibration of a slender thin-walled beam[J]. International Journal of Applied Mechanics, 2020, 12(5): 1-21.
|
[8] |
THOMSON W T, REITER G S. Attitude drift of space vehicles[J]. The Journal of the Astronautical Sciences, 1960, 7(2):29-36.
|
[9] |
PAGHISI, FRANKLIN C A, MAR J. Alouette Ⅰ: the first three Years in orbit[B]. Ottawa, Canada:Defence Research Telecommunications Establishment, 1967.
|
[10] |
ETKIN B, HUGHTES P C. Explanation of the anomalous spin behavior of satellites with long flexible antennae[J]. Journal of Spacecraft and Rockets, 1967, 4(9):1139-1145.
|
[11] |
HUGHES P C, CHERCHAS D B. Influence of solar radiation on the spin behavior of satellites with long flexible antennae[R]. Transactions of the Canadian Aeronautics and Space Institute, 1969, 2(2):53-57.
|
[12] |
JONES J P. Thermoelastic vibrations of a beam[J]. Journal of the Acoustical Society of America, 1966, 39(3): 542-548.
|
[13] |
FRISCH H. Thermal bending plus twist of a thin walled cylinder of open section with application to gravity gradient booms[R]. NASATN D-4069, 1967.
|
[14] |
SEIBERT A G, RICE J S. Coupled thermally induced vibrations of beams[J]. AIAA Journal, 1973, 11(7): 1033-1035.
|
[15] |
JADEJA N D, LOO T C. Heat-induced vibration of a rectangular plate[J]. Journal of Engineering for Industry-Transactions of the ASME, 1974, 96(3):1015-1021.
|
[16] |
MAYERS J, STROUD R C. Dynamic response of rapidly heated plate elements[J]. AIAA Journal, 1971, 9(1):76-83.
|
[17] |
KRAUS H. Thermally induced vibrations of thin nonshallow spherical shells[J]. AIAA Journal, 1966, 4(3): 500-505.
|
[18] |
RAY H, LOVELL E G. Thermal vibrations of thin cylindrical-shells[J]. Journal of Thermal Stresses, 1988, 11(2):77-91.
|
[19] |
ELLIOTT T, RIMROTT F P J. Torsion of slit, overlapped, thin-walled tubes[J]. Journal of Spacecraft and Rockets, 1966, 3(6):873-876.
|
[20] |
FLORIO F A, HOBBS J R B. An analytical representation of temperature distributionsin gravity gradientrods[J]. AIAA Journal, 1968, 6(1): 99-102.
|
[21] |
GRAHAM J D. Radiation heat transfer around the interior of a long cylinder[J]. Journal of Spacecraft and Rockets, 1970, 7(3):372-374.
|
[22] |
MASON J B. Analysis of thermally induced structural vibrations by finite element techniques:NASA TM X-63488[R]. Greenbelt, MD, US: NASA Goddard Space Flight Center, 1968.
|
[23] |
NAMBURU R R, TAMMA K K. Thermally-induced structural dynamic response of flexural configurations influenced by linear/non-linear thermal effects[C]// Proceedings of 32nd Structures, Structural Dynamics, and Materials Conference. Cleveland, OH, US: National Aeronautics and Space Administration, 1991.
|
[24] |
TAMMA K K, NAMBURU R R. Unified transient analysis formulations for interdisciplinary thermal structural problems[C]// Proceedings of the 6th International Conferenceon Numerical Methods in Thermal Problems. Stanford, CA, US: Pineridge Press, 1991.
|
[25] |
RAND O, GIVOLI D. A finite element spectral method with application to the thermo-elastic analysis of space structures[J]. International Journal of Numerical Methods in Engineering, 1990, 30(2):291-306.
|
[26] |
RAND O, GIVOLI D. Thermal analysis of space trusses including three-dimensional effects[J]. International Journal of Numerical Methods for Heat and Fluid Flow, 1992, 2(2):115-125.
|
[27] |
GIVOLI D, RAND O. Harmonic finite element thermoelastic analysis of space frames and trusses[J]. Journal of Thermal Stresses, 1993, 16(3): 233-248.
|
[28] |
THIORNTON E A, KIM Y A. Thermal induced bending vibrations of a flexible rolled-up solar array[J]. Journal of Spacecraft and Rockets, 1993, 30(4):438-448.
|
[29] |
丁勇. 大型空间结构的热-结构有限元分析[D]. 北京: 清华大学, 2002.
|
|
DING Y. Thermal structural finite element analysis of large spatial structures[D]. Beijing: Tsinghua University, 2002. (in Chinese)
|
[30] |
DING Y, XUE M D, KIM J K. Thermo-structural analysis of space structures using Fourier tube elements[J]. Computational Mechanics, 2005, 36 (4): 289-297.
|
[31] |
XUE M D, DING Y. Two kinds of tube elements for transient thermal-structural analysis of large space structures[J]. International Journal for Numerical Methods in Engineering, 2004, 59(10):1335-1353.
|
[32] |
程乐锦. 大型空间结构的热诱发振动有限元分析[D]. 北京: 清华大学, 2003.
|
|
CHENG L J. Finite element analysis of thermal induced vibration in large space structures[D]. Beijing: Tsinghua University, 2003. (in Chinese)
|
[33] |
程乐锦, 薛明德. 大型空间结构热-动力学耦合有限元分析[J]. 清华大学学报, 2004, 44(5):681-684, 688.
|
|
CHENG L J, XUE M D. Coupled thermal-dynamic FEM analysis of large scale space structures[J]. Journal of Tsinghua University, 2004, 44(5):681-684, 688. (in Chinese)
|
[34] |
段进. 大型柔性空间结构的热-动力学耦合有限元分析[D]. 北京: 清华大学, 2007.
|
|
DUAN J. Thermal dynamic coupling finite element analysis of large flexible space structures[D]. Beijing: Tsinghua University, 2007. (in Chinese)
|
[35] |
沈振兴. 基于绝对坐标的大型空间多体结构热致振动研究[D]. 北京: 北京理工大学, 2014.
|
|
SHEN Z X. Thermally induced vibrations of large-scale space multi-body structures based on the absolute coordinate[D]. Beijing: Beijing Institute of Technology, 2014. (in Chinese)
|
[36] |
SHEN Z X, TIAN Q, LIU X N, et al. Thermally induced vibrations of flexible beams using absolute nodal coordinate formulation[J]. Aerospace Science and Technology, 2013, 29(1): 386-393.
|
[37] |
SHEN Z X, HU G K. Thermally induced vibrations of solar panel and their coupling with satellite[J]. International Journal of Applied Mechanics, 2013, 5(3): 1350031.
|
[38] |
SHEN Z X, LI P, LIU C, et al. A finite element beam model including cross-section distortion in the absolute nodal coordinate formulation[J]. Nonlinear Dynamics, 2014, 77(3):1019-1033.
|
[39] |
SHEN Z X, HU G K. Thermally induced dynamics of a spinning spacecraft with an axial flexible boom[J]. Journal of Spacecraft and Rockets, 2015, 52(5):1503-1508.
|
[40] |
LI J, YAN S. Thermally induced vibration of composite solar array with honeycomb panels in low earth orbit[J]. Applied Thermal Engineering, 2014, 71(1):419-432.
|
[41] |
LI J, YAN S, CAI R. Thermal analysis of composite solar array subjected to space heat flux[J]. Aerospace Science & Technology, 2013, 27(1):84-94.
|
[42] |
孔祥宏, 王志瑾. 空间站柔性太阳翼热诱发振动分析[J]. 振动与冲击, 2015, 34(5):220-227.
|
|
KONG X H, WANG Z J. Thermally induced vibration analysis of a space station’s flexible solar wing[J]. Journal of Vibration and Shock, 2015, 34(5):220-227. (in Chinese)
|
[43] |
孔祥宏, 王志瑾. 空间站柔性太阳翼桅杆热诱发振动分析[J]. 上海交通大学学报(自然版), 2014, 48(8): 1103-1108.
|
|
KONG X H, WANG Z J. Thermally induced vibration of the flexible solar wing of the mast of space station[J]. Journal of Shanghai Jiaotong University (Natural Edition), 2014, 48(8): 1103-1108. (in Chinese)
|
[44] |
AZADI E, FAZELZ S A, AZADI M. Thermally induced vibrations of smart solar panel in a low-orbit satellite[J]. Advances in Space Research, 2017, 59: 1502-1513.
|
[45] |
DENNEHY C, ZIMBELMAN D, WELCH R. Sunrise/Sunset thermal shock disturbance analysis and simulation for the TOPEX satellite[R]. AIAA 90-0470, 1990:1-12.
|
[46] |
薛明德, 李伟, 向志海. 中心舱体-附件耦合系统热颤振有限元分析[J]. 清华大学学报(自然科学版), 2008(2):112-117.
|
|
XUE M D, LI W, XIANG Z H. Thermal flutter analysis of a spacecraft with a flexible appendage based on FEM[J]. Journal of Tsinghua University (Natural Science Edition), 2008(2): 112-117. (in Chinese)
|
[47] |
LIU J, PAN K. Rigid-flexible-thermal coupling dynamic formulation for satellite and plate multibody system[J]. Aerospace science and technology, 2016, 52:102-114.
|
[48] |
LIU L, WANG X D, SUN S P, et al. Dynamic characteristics of flexible spacecraft with double solar panels subjected to solar radiation[J]. International Journal of Mechanical Sciences, 2019, 151: 22-32.
|
[49] |
FRISCH H P. Thermally induced vibrations of long thin-walled cylinders of open section[J]. Journal of Spacecraft and Rockets, 1970, 7(8):897-905.
|
[50] |
AUGUSTI G. Instability of struts subject to radiant heat. meccanica[J]. 1968, 3(32):167-176.
|
[51] |
KOVAL L R, MULLER M R, PAROCZAI A J. Solar flutter of a thin-walled open-section boom[R]. Presented at the Symposium on Gravity Gradient Altitude Control sponsored by the Air Force and Aerospace Corporation, Los Angeles, US: 1968.
|
[52] |
YU Y Y. Thermally induced vibration and flutter of a flexible boom[J]. Journal of Spacecraft and Rockets, 1969, 6(8):902-910.
|
[53] |
GRAHAM J D. Solar induced bending vibrations of a flexible member[J]. AIAA Journal, 1970, 8(11):2031-2036.
|
[54] |
RIMROTT F, ABDELSAYED R. Flexural thermal flutter under laboratory conditions[J]. Transactions of the Canadian Society for Mechanical Engineering, 1977, 4(4):189-196.
|
[55] |
张军徽. 空间结构热致响应主动控制的热流驱动方法和热颤振准则[D]. 北京: 清华大学, 2013.
|
|
ZHANG J W. Thermal flow driven method and thermal flutter criterion for active control of thermal response in spatial structures[D]. Beijing: Tsinghua University, 2013. (in Chinese)
|
[56] |
ZHANG J H, XIANG Z H, LIU Y H, et al. Stability of thermally induced vibrationof a beam subjected to solar heating[J]. AIAA Journal, 2014.
|
[57] |
YUAN X D, XIANG Z H. Athermal-flutter criterion for an open thin-walled circular cantilever beam subject to solar heating[J]. Chinese Journal of Aeronautics, 2018, 31(9): 1902-1909.
|
[58] |
BEAM R M. On the phenomenon of thermoelastic Instability (thermal flutter) of booms with open cross section[R], NASA TN D-5222, 1969.
|
[59] |
RIMROTT F. The frequency criterion for thermally induced vibrations in elastic beams[J]. Archive of Applied Mechanics, 1981, 50(4):281-287.
|
[60] |
SUMI S. Thermoelastic behavior and stability of spacecraft booms[R]. Report pf Research Project, Grant-in-Aid for Scientific Research, 1990, 3:1-175. (primarily in Japanese)
|
[61] |
MUROZONO M, HASHIMOTO Y, SUMI S. Thermally-induced vibration and stability of booms with open cross section caused by unidirectional radiant heating[J]. Journal of Japan Society for Aeronautical and Space Sciences. 1985, 33(383):719-727. (in Japanese with English abstract)
|
[62] |
FOSTER R S, THORNTON E A. An experimental investigation of thermally induced vibrations of spacecraft structures[C]// Proceedings of the 35th Structures, Structural Dynamics, and Materials Conference, 1994:584-596.
|
[63] |
SU X M, ZHANG J H, WANG J, et al. Experimental investigation of the thermally induced vibration of a space boom section[J]. Science China Physics Mechanics Astronmy, 2015, 58(4):58-66.
|
[64] |
FAN C, BI Y Q, WANG J, et al. Experimental investigation of heat flux characteristics on the thermally induced vibration of a slender thin-walled beam[J]. International Journal of Applied Mechanics, 2020, 12(5): 1-21.
|
[65] |
范超. 大型空间结构热致动态响应机理及试验方法研究[D]. 北京: 中国空间技术研究院, 2021.
|
|
FAN C. Research on the mechanism and experimental method of thermal induced dynamic response of large space structures[D] Beijing: China Academy of Space Technology, 2021. (in Chinese)
|
[66] |
WANG J, JIN D G, FAN C, et al. Predicting the on-orbit thermally induced vibration through the integrated numerical and experimental approach[J]. Acta Astronautica, 2022, 192: 341-350.
|
[67] |
BEALS G A, CRUM R C, DOUGHERTY H J, et al. Hubble space telescope precision pointing control system[J]. NTRS, 1986.
|
[68] |
LUO C, LUO M, WANG Y B, et al. Passive vibration suppression of large space truss structures by viscous damping[J]. International Journal of Space Science and Engineering. 2020, 6(2): 165-178.
|
[69] |
BERMAN A, NAGY E Y. Improvement of a large analytical model using test data[J]. AIAA, 1983, 21: 1168-1173.
|
[70] |
LANG G F, GEROGE F. Demystifying complex modes[J]. Sound and Vibration, 1989, 23(1) : 36-40.
|
[71] |
淡丹辉, 孙利民. 结构动力有限元分析的阻尼建模及评价[J]. 振动与冲击, 2007, 26(2):4.
|
|
DAN D H, SUN L M. Damping model and its evaluation in engineering structure dynamical analysis by finite element method[J]. Journal of Vibration and Shock, 2007, 26(2):4. (in Chinese)
|
[72] |
MANNINGR. Optimum design of intelligent truss structures[C]// Proceedings of the 32nd Structures, Structural Dynamics, and Materials Conference, 1991: 1991-1158.
|
[73] |
CHEN G S, BRUNO R J, SALAMA S. Optimal placement of active/passive members in truss structures using simulated annealing[J]. AIAA, 1991, 29(8).
|
[74] |
CHANDRASHEKHARA K, TENNETI R. Thermally induced vibration suppression of laminated plates with piezoelectric sensors and actuators[J]. Smart Materials & Structures, 1995, 4(4):281-290.
|
[75] |
TZOU H S, YE R, VENKAYYA V B. Active control of mechanical and thermal shock induced vibrations[C]// Proceedings of the Adaptive Structures Forum, 1996:39-45.
|
[76] |
INMAN D J, RIETZ R W, WETHERHOLD R C. Control of thermally induced vibrations using smart structures[C]// Proceedings of the Dynamics and Control of Structures in Space Ⅲ. 1996:3-16.
|
[77] |
TYLIKOWSKI A. Stability and stabilization of thermally induced vibrations of cylindrical shells[J]. Journal of Thermal Stresses, 2001, 24(6):605-628.
|
[78] |
RAJA S, SINHA P K, PRATHAP G, et al. Thermally induced vibration control of composite plates and shells with piezoelectric active damping[J]. Smart Materials & Structures, 2004, 13(4):939-950.
|
[79] |
ASHIDA F, SAKATA S, TAUCHERT T R, et al. Control of thermally induced vibration in a composite beam with damping effect[J]. Journal of Thermal Stresses, 2006, 29(2):139-152.
|
[80] |
KUMAR R, MISHRA B K, JAIN S C. Thermally induced vibration control of cylindrical shell using piezoelectric sensor and actuator[J]. International Journal of Advanced Manufacturing Technology, 2008, 38(5/6):551-562.
|
[81] |
ILSOUNG Y, OHSEOP S, LIBRESCU L. Vibration control of composite spacecraft booms subjected to solar heating[J]. Journal of Thermal Stresses, 2009, 32(1/2):95-111.
|
[82] |
ZHANG J H, XIANG Z H, LIU Y H, Quasi-static shape control of flexible space structures by using heaters[J]. AIAA Journal, 2013, 51(4): 1003-1007.
|
[83] |
ZHANG J H, XIANG Z H, LIU Y H, Control of the thermally-induced vibration of space structures by using heaters[J]. AIAA Journal of Spacecraft and Rockets, 2014, 51(5): 1454-1463.
|
[84] |
FANL J, XIANG Z H, XUE M D, et al. The robust optimization for large scale space structures subjected to thermal loadings[J]. Journal of Thermal Stresses, 2010, 33(3): 202-225.
|
[85] |
范立佳, 向志海, 薛明德, 等. 空间结构热变形的子域摄动随机有限元解法[J]. 清华大学学报(自然科学版), 2010, 50(7):1099-1103.
|
|
FAN L J, XIANG Z H, XUE M D, et al. Perturbation based sub-domain stochastic finite element method for analyzing thermal deformations of space structures[J]. Journal of Tsinghua University (Natural Science Edition), 2010, 50(7):1099-1103. (in Chinese)
|
[86] |
FAN L J, XIANG Z H, XUE M D, et al. Robust optimization of thermal-dynamic coupling systems using a Kriging model[J]. AIAA Journal of Spacecraft and Rockets, 2010, 47(6):1029-1037.
|
[87] |
FANL J, XIANG Z H, XUE M D, et al. A sub-domain method for solving stochastic problems with large uncertainties and repeated eigenvalues[J]. International Journal for Numerical Methods in Biomedical Engineering, 2011, 27: 1264-1279.
|
[88] |
FAN L J, XIANG Z H. Suppressing the thermally-induced vibration of large scale space structures via structural optimization[J]. Journal of Thermal Stresses, 2015, 38(1): 1-21.
|
[89] |
CHAMBERLAIN M K, KIEFERR S H, LAPOINTE M, et al. On-orbit flight testing of the roll-out solar array[J]. Acta Astronautica, 2021(179): 407-414.
|