Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (4): 240097-.doi: 10.12382/bgxb.2024.0097
Previous Articles Next Articles
ZHENG Zhuoyang, DONG Heng*(), WU Haijun, JIA Tongqing, YANG Guanxia, HUANG Fenglei
Received:
2024-11-30
Online:
2025-04-30
Contact:
DONG Heng
CLC Number:
ZHENG Zhuoyang, DONG Heng, WU Haijun, JIA Tongqing, YANG Guanxia, HUANG Fenglei. Nonlinear Dynamic Model and Response Characteristics of Penetration Projectile-fuze System[J]. Acta Armamentarii, 2025, 46(4): 240097-.
Add to citation manager EndNote|Ris|BibTeX
邵氏硬度/HA | 密度/(g·cm-3) | 弹性模量/MPa |
---|---|---|
85 | 0.944 | 18.89 |
Table 1 Physical characteristics of polyurethane material[18]
邵氏硬度/HA | 密度/(g·cm-3) | 弹性模量/MPa |
---|---|---|
85 | 0.944 | 18.89 |
α/(N·m-1) | β/(N·m-1) | γ | de | g∞ | τ/s |
---|---|---|---|---|---|
8416570.60 | 1873.84 | 118.50 | 4.36 | 0.52 | 3.39×10-4 |
Table 2 Dynamics model parameters of polyurethane
α/(N·m-1) | β/(N·m-1) | γ | de | g∞ | τ/s |
---|---|---|---|---|---|
8416570.60 | 1873.84 | 118.50 | 4.36 | 0.52 | 3.39×10-4 |
密度/ (g·cm-3) | 线性体积模量 /GPa | 阻尼 系数 | 剪切模量/ GPa | 极限应力/ GPa |
---|---|---|---|---|
0.9443 | 4 | 0.1 | 0.04 | 1×10-4 |
Table 3 Main parameters of polyurethane model
密度/ (g·cm-3) | 线性体积模量 /GPa | 阻尼 系数 | 剪切模量/ GPa | 极限应力/ GPa |
---|---|---|---|---|
0.9443 | 4 | 0.1 | 0.04 | 1×10-4 |
部件名称 | 密度/ (g·cm-3) | 弹性/剪切 模量/GPa | 泊松比 |
---|---|---|---|
战斗部壳体 | 7.80 | 215.00 | 0.284 |
引信壳体 | 7.83 | 210.00 | 0.320 |
螺纹连接 | 7.80 | 3.26 | 0.284 |
PCB板 | 2.13 | 209.00 | 0.300 |
电子模块 | 1.30 | 110.00 | 0.340 |
传感器 | 2.70 | 56.20 | 0.330 |
模拟装药 | 1.70 | 5.00 | 0.320 |
混凝土靶板 | 2.18 | 12.70 |
Table 4 Main parameters of material models
部件名称 | 密度/ (g·cm-3) | 弹性/剪切 模量/GPa | 泊松比 |
---|---|---|---|
战斗部壳体 | 7.80 | 215.00 | 0.284 |
引信壳体 | 7.83 | 210.00 | 0.320 |
螺纹连接 | 7.80 | 3.26 | 0.284 |
PCB板 | 2.13 | 209.00 | 0.300 |
电子模块 | 1.30 | 110.00 | 0.340 |
传感器 | 2.70 | 56.20 | 0.330 |
模拟装药 | 1.70 | 5.00 | 0.320 |
混凝土靶板 | 2.18 | 12.70 |
数值 仿真 | 本文 模型 | 本文模型 偏差/% | 刚性 理论 | 刚性理论 偏差/% |
---|---|---|---|---|
-8000 | -7600 | 5.0 | -4300 | 45.0 |
Table 5 Comparison of acceleration peaks of numerical simulation and dynamical model g
数值 仿真 | 本文 模型 | 本文模型 偏差/% | 刚性 理论 | 刚性理论 偏差/% |
---|---|---|---|---|
-8000 | -7600 | 5.0 | -4300 | 45.0 |
靶板间隔/m | 弹靶作用频 率/Hz | 1阶固有频率/ 弹靶作用频率 | 加速度峰值/g |
---|---|---|---|
3 | 174 | 5.46 | -7663 |
2 | 284 | 3.41 | -7585 |
1 | 500 | 1.90 | -9617 |
Table 6 The relationship between projectile-target interaction frequency and natural frequency under different target spacings
靶板间隔/m | 弹靶作用频 率/Hz | 1阶固有频率/ 弹靶作用频率 | 加速度峰值/g |
---|---|---|---|
3 | 174 | 5.46 | -7663 |
2 | 284 | 3.41 | -7585 |
1 | 500 | 1.90 | -9617 |
[1] |
刘伟钊, 李蓉, 牛兰杰, 等. 硬目标侵彻起爆控制技术研究现状及展望[J]. 兵工学报, 2023, 44(6):1602-1619.
doi: 10.12382/bgxb.2022.0102 |
|
|
[2] |
|
[3] |
|
[4] |
王成华, 陈佩银, 徐孝诚. 侵彻过载实测数据的滤波及弹体侵彻刚体过载的确定[J]. 爆炸与冲击, 2007, 27(5):416-419.
|
|
|
[5] |
王喆. 弹体高速侵彻混凝土靶的数值模拟研究[D]. 北京: 北京理工大学, 2015.
|
|
|
[6] |
|
[7] |
刘波, 杨黎明, 李东杰, 等. 侵彻弹体结构纵向振动频率特性分析[J]. 爆炸与冲击, 2018, 38(3):677-682.
|
|
|
[8] |
王成华, 杨永刚, 杨阳, 等. 弹体非正撞击/侵彻载荷响应的一种半经验分析方法[J]. 导弹与航天运载技术, 2021(1):39-44.
|
|
|
[9] |
刘宗宝. 基于弹引系统动态特性的侵彻起爆控制技术[D]. 北京: 北京理工大学, 2016.
|
|
|
[10] |
程祥利, 刘波, 赵慧, 等. 侵彻战斗部-引信系统动力学建模与仿真[J]. 兵工学报, 2020, 41(4):625-633.
doi: 10.3969/j.issn.1000-1093.2020.04.001 |
doi: 10.3969/j.issn.1000-1093.2020.04.001 |
|
[11] |
张馨予, 吴艳青, 黄风雷. PBX装药弹体侵彻混凝土薄板的数值模拟[J]. 含能材料, 2018, 26(1):101-108.
|
|
|
[12] |
苏煜, 李毅, 刘小玉, 等. 引信系统螺纹连接界面的冲击传递特性模拟方法研究[J]. 北京理工大学学报, 2024, 44(2):135-145.
|
|
|
[13] |
|
[18] |
杨冠侠, 武海军, 田泽, 等. 金属/聚氨酯波形发生器复合弹体冲击载荷特性及调控机制[J]. 兵工学报, 2024, 45(5):1648-1662.
doi: 10.12382/bgxb.2022.0944 |
doi: 10.12382/bgxb.2022.0944 |
|
[19] |
|
[20] |
|
[21] |
姜东, 吴邵庆, 史勤丰, 等. 基于各向同性本构关系薄层单元的螺栓连接参数识别[J]. 振动与冲击, 2014, 33(22):35-40.
|
|
|
[22] |
鄢阿敏, 皮爱国, 王健, 等. 基于薄层单元模型的弹体与引信系统螺纹连接参数确定方法[J]. 兵工学报, 2021, 42(4):743-754.
doi: 10.3969/j.issn.1000-1093.2021.04.008 |
doi: 10.3969/j.issn.1000-1093.2021.04.008 |
|
[23] |
|
[24] |
张冬梅, 高世桥, 李世中. 侵彻过程中弹引系统的冲击传递特性研究[J]. 兵器装备工程学报, 2020, 41(12):27-34.
|
[14] |
|
[15] |
|
[16] |
张海涛, 张康, 李朝阳, 等. 降低加速度信号粘连的传感器二次封装材料[J]. 兵器装备工程学报, 2016, 37(7):37-41,73.
|
|
|
[17] |
鲁林, 李晓峰. 冲击环境作用下聚氨酯材料的应变率分布及吸能特性研究[J]. 兵工学报, 2015, 36(增刊1):213-219.
|
|
|
[24] |
|
[25] |
|
[26] |
吴飚, 任辉启, 陈力, 等. 弹体侵彻混凝土尺度效应试验研究与理论分析[J]. 防护工程, 2020, 42(2):1-10.
|
|
[1] | HAN Zhengda, WU Yunhao, ZHANG Wei, LIU Yi, LIU Jingang, ZHU Weiguo. Research on Electromechanical Coupling Dynamic Characteristics and Control of High-power Diesel Generator Set for Vehicle [J]. Acta Armamentarii, 2025, 46(4): 240397-. |
[2] | WANG Gangting, GUO Baoqiao, LIU Han, LUAN Kedi, GU Yuansen, CHEN Pengwan, ZHOU Jiangfan, LIU Zhanwei. Identification of Viscoelastic Constitutive Parameters of Acrylic Thin Plates Using Complex Virtual Fields Method [J]. Acta Armamentarii, 2025, 46(2): 240051-. |
[3] | FENG Yunwen, YANG Rongji, XUE Xiaofeng, LIU Jiaqi, GAO Tao. A Design Method of Vibration Accelerated Excitation Based on Feedback Approximate Damage [J]. Acta Armamentarii, 2025, 46(2): 240138-. |
[4] | ZHANG Xinze, XIAO Haijian, LIU Xinglong, XING Kongrui, LU Xiang. Design and Realization of a Ducted Fan Water-air Amphibious UAV [J]. Acta Armamentarii, 2025, 46(1): 231172-. |
[5] | XIE Yunkun, LIU Hui, GAO Pu, WU Yunhao, LI Xinyi, ZHOU Ruyi. Study on Inherent Vibration Characteristics and Resonance Speed of High-speed Electromechanical Transmission System for Vehicle [J]. Acta Armamentarii, 2025, 46(1): 231149-. |
[6] | WANG Pengfei, LIU Zhen, ZHOU Changwei, DANG Tianjiao. Airocraft Research on Thermal Vibration Test of Typical Rudder Structure [J]. Acta Armamentarii, 2024, 45(S2): 170-175. |
[7] | WANG Qingshuo, GUO Lei, GAO Hongyin, HE Yuan, WANG Chuanting, CHEN Pengxiang, HE Yong. Simulation Study of Axial Vibration of Graded Projectile Structure [J]. Acta Armamentarii, 2024, 45(S1): 191-199. |
[8] | LUO Cheng, FAN Chao, BI Yanqiang, SU Xinming, LIN Guiping. Research Progress on Thermally-induced Vibration of Large Deployable Space Structure [J]. Acta Armamentarii, 2024, 45(S1): 231-241. |
[9] | DU Xiaoqiong, LI Bin, LUO Linyin, LIU Mujun, YANG Rong. Analysis of Walking Vibration and Stability of High Strut Landing Gear [J]. Acta Armamentarii, 2024, 45(8): 2793-2805. |
[10] | LIU Yang, QIN Guohua, WU Zhuxi, LOU Weida, LAI Xiaochun. Analysis and Prediction of Surface Topographyin Peripheral Milling Based on Workpiece Vibration and Milling-Tool Structure [J]. Acta Armamentarii, 2023, 44(7): 2132-2146. |
[11] | YANG Shuo, DU Tianwei, ZHANG Xiaopeng, MA Liang, ZHANG Guichang. Effect of Foreign Object Damage on Vibration Fatigue Crack Propagation of Blades [J]. Acta Armamentarii, 2023, 44(6): 1713-1721. |
[12] | LIN Shengye, WANG Maosen, XIE Yangyang, LI Yong, DAI Jinsong. Bond Space Expression of Bending Vibration in Timoshenko Beam and Its Application in Muzzle Disturbance Analysis [J]. Acta Armamentarii, 2023, 44(6): 1775-1783. |
[13] | WANG Deyou, LI Shipeng, JIN Ge, WANG Ruyao, GUAN Dian, WANG Ningfei. Characteristics of Ignition Start-up Process of Underwater Solid Rocket Motor with the Effect of Nozzle Closure [J]. Acta Armamentarii, 2023, 44(6): 1665-1676. |
[14] | LI Zhanlong, ZHANG Zheng, JIANG Wenwen, LIU Qi, REN Zhizhao, WANG Yao, SONG Yong. Dynamic Characteristics of Quasi-Zero Stiffness Vibration Isolation System with Magnetic Rings [J]. Acta Armamentarii, 2023, 44(6): 1784-1794. |
[15] | YANG Hongtao, LU Zhihui, SUN Haozhi, WU Yiyong, LIU Min, LAI Yanbo. Collaborative Proportional Method for Measuring Triaxial Moment of Inertia Based on Vibration Compound Pendulum and Torsion Pendulum [J]. Acta Armamentarii, 2023, 44(5): 1513-1520. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||