Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (8): 2487-2496.doi: 10.12382/bgxb.2023.1083
Previous Articles Next Articles
WANG Yifan1, LI Yongpeng2, XU Yuxin1,3,*(), LIU Tielei1, JIAO Xiaolong1, WANG Ruosu1
Received:
2024-11-06
Online:
2024-08-01
Contact:
XU Yuxin
CLC Number:
WANG Yifan, LI Yongpeng, XU Yuxin, LIU Tielei, JIAO Xiaolong, WANG Ruosu. Penetration Effect of Tungsten Alloy Spherical Projectile on CFRP-coated B4C Ceramics[J]. Acta Armamentarii, 2024, 45(8): 2487-2496.
Add to citation manager EndNote|Ris|BibTeX
工况 编号 | 破片 直径 D/mm | 陶瓷 厚度 T/mm | 弹靶 径厚比 D/T | 侵彻 速度v0/ (m·s-1) | 剩余 速度vr/ (m·s-1) |
---|---|---|---|---|---|
1-1 | 7 | 8 | 0.875 | 771 | 396 |
1-2 | 12 | 0.583 | 831 | 228 | |
1-3 | 6 | 1.833 | 528 | 457 | |
1-4 | 6 | 1.833 | 1120 | 1006 | |
1-5 | 11 | 8 | 1.375 | 661 | 519 |
1-6 | 10 | 1.100 | 664 | 440 | |
1-7 | 12 | 0.917 | 658 | 373 |
Table 1 Results of ballistic impact test
工况 编号 | 破片 直径 D/mm | 陶瓷 厚度 T/mm | 弹靶 径厚比 D/T | 侵彻 速度v0/ (m·s-1) | 剩余 速度vr/ (m·s-1) |
---|---|---|---|---|---|
1-1 | 7 | 8 | 0.875 | 771 | 396 |
1-2 | 12 | 0.583 | 831 | 228 | |
1-3 | 6 | 1.833 | 528 | 457 | |
1-4 | 6 | 1.833 | 1120 | 1006 | |
1-5 | 11 | 8 | 1.375 | 661 | 519 |
1-6 | 10 | 1.100 | 664 | 440 | |
1-7 | 12 | 0.917 | 658 | 373 |
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
ρ/(g·cm-3) | 17.6 | Tm/K | 3695 |
G/GPa | 160 | Tr/K | 300 |
a/MPa | 1505.8 | Cp/(J·kg-1·K-1) | 384 |
b/MPa | 176.5 | Cv /(m·s-1) | 4046 |
n | 0.12 | S1 | 1.268 |
c | 0.016 | γ0 | 1.58 |
m | 1.0 | α0 | 0.46 |
/s-1 | 1×10-6 |
Table 3 Material model parameters of 93W[20]
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
ρ/(g·cm-3) | 17.6 | Tm/K | 3695 |
G/GPa | 160 | Tr/K | 300 |
a/MPa | 1505.8 | Cp/(J·kg-1·K-1) | 384 |
b/MPa | 176.5 | Cv /(m·s-1) | 4046 |
n | 0.12 | S1 | 1.268 |
c | 0.016 | γ0 | 1.58 |
m | 1.0 | α0 | 0.46 |
/s-1 | 1×10-6 |
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
ρ/(g·cm-3) | 2.51 | B | 0.7311 |
K1/GPa | 233 | M | 0.85 |
K2/GPa | -593 | /s-1 | 1.0 |
K3/GPa | 2800 | T/GPa | 0.26 |
β | 1.0 | SFMAX | 0.2 |
G/GPa | 197 | HEL/GPa | 19.0 |
A | 0.9637 | PHEL/GPa | 8.71 |
N | 0.67 | D1 | 0.001 |
c | 0.005 | D2 | 0.50 |
Table 4 Material model parameters of B4C ceramics[22-23]
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
ρ/(g·cm-3) | 2.51 | B | 0.7311 |
K1/GPa | 233 | M | 0.85 |
K2/GPa | -593 | /s-1 | 1.0 |
K3/GPa | 2800 | T/GPa | 0.26 |
β | 1.0 | SFMAX | 0.2 |
G/GPa | 197 | HEL/GPa | 19.0 |
A | 0.9637 | PHEL/GPa | 8.71 |
N | 0.67 | D1 | 0.001 |
c | 0.005 | D2 | 0.50 |
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
ρ/(g·cm-3) | 1.81 | Gbc/GPa | 3.43 |
Ea/GPa | 60 | Gca/GPa | 3.43 |
Eb/GPa | 60 | XC/MPa | 2150 |
Ec/GPa | 12.3 | XT/MPa | 2150 |
υba | 0.051 | YC/MPa | 199.8 |
υca | 0.21 | YT/MPa | 62.3 |
υcb | 0.21 | Sc/MPa | 81.5 |
Gab/GPa | 12 |
Table 5 Material model parameters of CFRP[25⇓-27]
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
ρ/(g·cm-3) | 1.81 | Gbc/GPa | 3.43 |
Ea/GPa | 60 | Gca/GPa | 3.43 |
Eb/GPa | 60 | XC/MPa | 2150 |
Ec/GPa | 12.3 | XT/MPa | 2150 |
υba | 0.051 | YC/MPa | 199.8 |
υca | 0.21 | YT/MPa | 62.3 |
υcb | 0.21 | Sc/MPa | 81.5 |
Gab/GPa | 12 |
工况 编号 | 试验结果 | 仿真结果 | 误差/ % | ||
---|---|---|---|---|---|
侵彻 结果 | 剩余速度vr/ (m·s-1) | 侵彻 结果 | 剩余速度vr/ (m·s-1) | ||
1-1 | 击穿 | 396 | 击穿 | 469 | 18.43 |
1-2 | 击穿 | 228 | 击穿 | 210 | -7.89 |
1-3 | 击穿 | 457 | 击穿 | 444 | -2.84 |
1-4 | 击穿 | 1 006 | 击穿 | 990 | -1.59 |
Table 6 Comparison between numerical simulated and test results
工况 编号 | 试验结果 | 仿真结果 | 误差/ % | ||
---|---|---|---|---|---|
侵彻 结果 | 剩余速度vr/ (m·s-1) | 侵彻 结果 | 剩余速度vr/ (m·s-1) | ||
1-1 | 击穿 | 396 | 击穿 | 469 | 18.43 |
1-2 | 击穿 | 228 | 击穿 | 210 | -7.89 |
1-3 | 击穿 | 457 | 击穿 | 444 | -2.84 |
1-4 | 击穿 | 1 006 | 击穿 | 990 | -1.59 |
v0/ (m·s-1) | D/T | |||||||
---|---|---|---|---|---|---|---|---|
0.583 | 0.700 | 0.875 | 1.080 | 1.167 | 1.300 | 1.630 | 2.170 | |
900 | 294 | 469 | 590 | 735 | 692 | 751 | 817 | 831 |
950 | 345 | 521 | 621 | 737 | 736 | 804 | 844 | 886 |
1000 | 400 | 557 | 654 | 780 | 773 | 854 | 890 | 924 |
1050 | 420 | 606 | 686 | 824 | 821 | 896 | 955 | 971 |
1100 | 427 | 639 | 731 | 874 | 866 | 928 | 995 | 1 020 |
1150 | 464 | 673 | 772 | 919 | 907 | 978 | 1030 | 1070 |
1200 | 547 | 696 | 829 | 961 | 947 | 1010 | 1070 | 1100 |
Table 7 Simulated results of residual velocitym/s
v0/ (m·s-1) | D/T | |||||||
---|---|---|---|---|---|---|---|---|
0.583 | 0.700 | 0.875 | 1.080 | 1.167 | 1.300 | 1.630 | 2.170 | |
900 | 294 | 469 | 590 | 735 | 692 | 751 | 817 | 831 |
950 | 345 | 521 | 621 | 737 | 736 | 804 | 844 | 886 |
1000 | 400 | 557 | 654 | 780 | 773 | 854 | 890 | 924 |
1050 | 420 | 606 | 686 | 824 | 821 | 896 | 955 | 971 |
1100 | 427 | 639 | 731 | 874 | 866 | 928 | 995 | 1 020 |
1150 | 464 | 673 | 772 | 919 | 907 | 978 | 1030 | 1070 |
1200 | 547 | 696 | 829 | 961 | 947 | 1010 | 1070 | 1100 |
工况 编号 | D/T | v0/ (m·s-1) | vr/(m·s-1) | 误差/ % | |
---|---|---|---|---|---|
试验值 | 计算值 | ||||
1-1 | 0.875 | 771 | 396 | 455 | 14.78 |
1-2 | 0.583 | 831 | 228 | 220 | -3.67 |
1-3 | 1.833 | 528 | 457 | 468 | 2.50 |
1-4 | 1.833 | 1120 | 1006 | 1001 | -0.48 |
1-5 | 1.375 | 661 | 519 | 531 | 2.34 |
1-6 | 1.100 | 664 | 440 | 469 | 6.53 |
1-7 | 0.917 | 658 | 373 | 388 | 4.08 |
Table 8 Comparison of test and theoretical values
工况 编号 | D/T | v0/ (m·s-1) | vr/(m·s-1) | 误差/ % | |
---|---|---|---|---|---|
试验值 | 计算值 | ||||
1-1 | 0.875 | 771 | 396 | 455 | 14.78 |
1-2 | 0.583 | 831 | 228 | 220 | -3.67 |
1-3 | 1.833 | 528 | 457 | 468 | 2.50 |
1-4 | 1.833 | 1120 | 1006 | 1001 | -0.48 |
1-5 | 1.375 | 661 | 519 | 531 | 2.34 |
1-6 | 1.100 | 664 | 440 | 469 | 6.53 |
1-7 | 0.917 | 658 | 373 | 388 | 4.08 |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
汪建锋, 傅苏黎, 丁华东. 陶瓷基装甲抗枪弹机理研究现状[J]. 装甲兵工程学院学报, 2004, 18(3):65-68,75.
|
|
|
[6] |
杨超, 陈炯. 陶瓷块复合材料抗弹性能研究[J]. 兵器材料科学与工程, 2003(2):15-18.
|
|
|
[7] |
黄良钊, 张巨先. 弹丸对陶瓷靶侵彻试验中的约束效应研究[J]. 兵器材料科学与工程, 1999, 22(4):13-17.
|
|
|
[8] |
|
[9] |
|
[10] |
曹凌宇, 罗兴柏, 刘国庆, 等. 侧向约束陶瓷抗侵彻性能试验研究[J]. 装甲兵工程学院学报, 2018, 32(5):76-80.
|
|
|
[11] |
孙昕, 田超, 孙启添, 等. 金属封装多层陶瓷复合结构抗侵彻性能[J]. 兵工学报, 2020, 41(增刊2):69-75.
|
|
|
[12] |
王曙光, 朱建生. 金属封装陶瓷复合装甲抗弹性能研究[J]. 弹道学报, 2009, 21(4):68-71.
|
|
|
[13] |
韩辉, 李楠. 金属封装陶瓷复合装甲抗弹性能研究[J]. 兵器材料科学与工程, 2008, 31(4):79-82.
|
|
|
[14] |
贾杰, 智小琦, 郝春杰, 等. Zr基非晶破片对碳纤维复合靶及后效铝靶的侵彻试验研究[J]. 高压物理学报, 2024, 38(2):130-139.
|
|
|
[15] |
李平, 李大红. Al2O3陶瓷复合靶抗长杆弹侵彻性能和机理实验研究[J]. 爆炸与冲击, 2003, 23(4):289-294.
|
|
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
余毅磊, 王晓东, 任文科, 等. 陶瓷/金属复合靶受12.7mm穿甲燃烧弹侵彻时弹靶破碎特征[J]. 兵工学报, 2022, 43(9):2307-2317.
|
|
[1] | ZHANG An, LI Changsheng, ZHANG He, MA Shaojie, YANG Benqiang. Experimental Study on IPM for Buffering and Energy Absorption [J]. Acta Armamentarii, 2024, 45(7): 2260-2269. |
[2] | LIU Bo, CHENG Xiangli, YANG He, ZHAO Hui, WU Xuexing, LIU Tao. Analysis of Load Characteristics of Fuze during Penetrating a Multi-layer Target Based on the Matching Relation of Projectile and Target [J]. Acta Armamentarii, 2024, 45(7): 2240-2250. |
[3] | LIU Tielei, WANG Xiaofeng, XU Yuxin, LI Yongpeng, ZHANG Jian. A Calculation Modelfor Penetration Depth of Tungsten Ball against Low-carbon Steel Considering Sphere Deformation [J]. Acta Armamentarii, 2024, 45(5): 1625-1636. |
[4] | ZHANG Jianwei, WU Ziqi, ZHANG Fengchao, XING Chengcheng, MENG Fanxing. Study on Similarity and Equivalent Design Method of Steel Plate Targets with Different Materials Based on Modified Compensation Model [J]. Acta Armamentarii, 2024, 45(4): 1297-1310. |
[5] | PEI Guiyan, NIE Jianxin, WANG Qiushi, JIAO Qingjie, DU Zhipeng, LI Ying. Study on Oblique Penetration of Metal Plate by Naval Gun Semi-armor-piercing Simulation Projectile [J]. Acta Armamentarii, 2024, 45(3): 731-743. |
[6] | CHEN Baihan, SHEN Zikai, ZOU Huihui, WANG Weiguang, WANG Kehui. Basic Evolution Characteristics of Oblique Penetration of Projectile against Hard Target [J]. Acta Armamentarii, 2023, 44(S1): 59-66. |
[7] | CHEN Baihan, WANG Libin, ZOU Huihui, WANG Weiguang, WANG Kehui. Influence of Spin on the Penetration Effect of Projectile [J]. Acta Armamentarii, 2023, 44(S1): 117-124. |
[8] | YU Shuangyang, PENG Yong. Numerical Simulation of Temperature Rise of 4340 Steel Projectile Penetrating into 45# Steel Target [J]. Acta Armamentarii, 2023, 44(S1): 144-151. |
[9] | LIU Hongfu, HUANG Fenglei, BAI Zhiling, DUAN Zhuoping. Theoretical Model of Oblique Penetration of Rigid Projectiles into Concrete Targets at Attack Angles [J]. Acta Armamentarii, 2023, 44(8): 2381-2390. |
[10] | ZHENG Yuanfeng, WANG Shipeng, LI Peiliang, ZHANG Yong, GE Chao. Combined Damage Behavior of Penetration and Blast of Reactive/Metal Tandem EFPs [J]. Acta Armamentarii, 2023, 44(8): 2273-2282. |
[11] | LIU Yan, WANG Baichuan, YAN Junbo, YAN Zichen, SHI Zhenqing, HUANG Fenglei. Dynamic Response of Honeycomb Sandwich Plate with Negative Poisson’s Ratio under Penetration [J]. Acta Armamentarii, 2023, 44(7): 1938-1953. |
[12] | ZHOU Lin, NI Lei, LI Dongwei, ZHANG Xiangrong, LIU Haiqing, JIANG Tao, ZHU Yingzhong. Test Method for Anti-overload Performance of Explosives [J]. Acta Armamentarii, 2023, 44(6): 1722-1732. |
[13] | LIU Weizhao, LI Rong, NIU Lanjie, SHI Kunlin. Research Status and Prospect of Hard-Target Penetration Initiation Control Technology [J]. Acta Armamentarii, 2023, 44(6): 1602-1619. |
[14] | SU Chenghai, LI Zongyu, ZHENG Yuanfeng, ZHENG Zhijian, GUO Huanguo. Penetration-deflagration Experiment and Coupling Mechanism of Reactive Liner Shaped Charge [J]. Acta Armamentarii, 2023, 44(2): 334-344. |
[15] | TANG Kui, WANG Jinxiang, LIU Liangtao, YANG Ming. Study on the Mechanism of Secondary Penetration of Long-rod Projectile and Its Influencing Factors [J]. Acta Armamentarii, 2023, 44(12): 3707-3718. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||