Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (8): 2478-2486.doi: 10.12382/bgxb.2023.0595
Previous Articles Next Articles
GUO Aiqiang1,2, LI Tianpeng1,2, ZHU Xi1,2, GUAN Zhichao1,2, LI Men1,2, DONG Hongyu1,2, GAO Xinbao1,2,*()
Received:
2023-06-20
Online:
2023-11-07
Contact:
GAO Xinbao
CLC Number:
GUO Aiqiang, LI Tianpeng, ZHU Xi, GUAN Zhichao, LI Men, DONG Hongyu, GAO Xinbao. Smoke Screen Video Detection and Parameter Extraction Based on Convolutional Neural Network and Spatio-temporal Features[J]. Acta Armamentarii, 2024, 45(8): 2478-2486.
Add to citation manager EndNote|Ris|BibTeX
方法 | 优点 | 缺点 |
---|---|---|
基于颜色和纹理特征[ | 1)实现简单; 2)对旋转变化的鲁棒性。 | 取决于图像分辨率。 |
基于运动特征[ | 可以忽略场景中像烟幕状的物体。 | 1)对光线变化敏感; 2)对相机震动敏感。 |
基于动态纹理和图像能量特征[ | 在高能量图像中,检测精度高。 | 1)执行复杂; 2)计算复杂度高; 3)对低能量背景敏感。 |
基于卷积神经网络[ | 1)检测精度高; 2)自动特征提取。 | 1)对烟幕的运动特性缺乏关注; 2)计算复杂度高; 3)网络训练需要较多的数据。 |
Table 1 Advantages and disadvantages of existing smoke screen detection methods
方法 | 优点 | 缺点 |
---|---|---|
基于颜色和纹理特征[ | 1)实现简单; 2)对旋转变化的鲁棒性。 | 取决于图像分辨率。 |
基于运动特征[ | 可以忽略场景中像烟幕状的物体。 | 1)对光线变化敏感; 2)对相机震动敏感。 |
基于动态纹理和图像能量特征[ | 在高能量图像中,检测精度高。 | 1)执行复杂; 2)计算复杂度高; 3)对低能量背景敏感。 |
基于卷积神经网络[ | 1)检测精度高; 2)自动特征提取。 | 1)对烟幕的运动特性缺乏关注; 2)计算复杂度高; 3)网络训练需要较多的数据。 |
视频片段编号 | 文件名称 | 数据集 | 视频图像尺寸/像素 | 视频帧数 | 是否有烟幕 |
---|---|---|---|---|---|
VC1 | 01_ballistic | 训练 | 320×240 | 347 | 是 |
VC2 | 02_ballistic | 训练 | 320×240 | 210 | 是 |
VC3 | 03_ballistic | 训练 | 1080×1920 | 3005 | 是 |
VC4 | 04_ballistic | 训练 | 1080×1920 | 1835 | 是 |
VC5 | 05_ballistic | 训练 | 320×288 | 2953 | 是 |
VC6 | 06_ballistic | 训练 | 1080×1920 | 630 | 是 |
VC7 | 07_ballistic | 训练 | 1080×1920 | 1400 | 是 |
VC8 | 08_ballistic | 训练 | 320×240 | 1726 | 是 |
VC9 | 09_ballistic | 预测 | 320×240 | 1200 | 是 |
VC10 | 10_ballistic | 预测 | 320×240 | 517 | 是 |
VC11 | 11_ballistic | 预测 | 1080×1920 | 640 | 是 |
VC12 | 12_ballistic | 预测 | 320×240 | 783 | 是 |
Table 2 Characteristics of video footage of jamming smoke screens used in experiments
视频片段编号 | 文件名称 | 数据集 | 视频图像尺寸/像素 | 视频帧数 | 是否有烟幕 |
---|---|---|---|---|---|
VC1 | 01_ballistic | 训练 | 320×240 | 347 | 是 |
VC2 | 02_ballistic | 训练 | 320×240 | 210 | 是 |
VC3 | 03_ballistic | 训练 | 1080×1920 | 3005 | 是 |
VC4 | 04_ballistic | 训练 | 1080×1920 | 1835 | 是 |
VC5 | 05_ballistic | 训练 | 320×288 | 2953 | 是 |
VC6 | 06_ballistic | 训练 | 1080×1920 | 630 | 是 |
VC7 | 07_ballistic | 训练 | 1080×1920 | 1400 | 是 |
VC8 | 08_ballistic | 训练 | 320×240 | 1726 | 是 |
VC9 | 09_ballistic | 预测 | 320×240 | 1200 | 是 |
VC10 | 10_ballistic | 预测 | 320×240 | 517 | 是 |
VC11 | 11_ballistic | 预测 | 1080×1920 | 640 | 是 |
VC12 | 12_ballistic | 预测 | 320×240 | 783 | 是 |
视频片段编号 | aTPR | aTNR | aFPR | aAccuracy |
---|---|---|---|---|
VC1 | 55.53 | 44.47 | 0 | 100 |
VC2 | 45.71 | 54.29 | 0 | 100 |
VC3 | 41.18 | 48.50 | 10.32 | 89.68 |
VC4 | 53.27 | 46.73 | 0 | 100 |
VC5 | 82.35 | 17.65 | 0 | 100 |
VC6 | 86.69 | 13.31 | 0 | 100 |
VC7 | 88.72 | 11.28 | 0 | 100 |
VC8 | 63.16 | 26.80 | 10.04 | 89.96 |
VC9 | 83.81 | 16.19 | 0 | 100 |
VC10 | 81.13 | 13.60 | 5.27 | 94.73 |
VC11 | 89.14 | 10.86 | 0 | 100 |
VC12 | 83.40 | 16.60 | 0 | 100 |
Table 3 The values evaluated when the neural network extracts %
视频片段编号 | aTPR | aTNR | aFPR | aAccuracy |
---|---|---|---|---|
VC1 | 55.53 | 44.47 | 0 | 100 |
VC2 | 45.71 | 54.29 | 0 | 100 |
VC3 | 41.18 | 48.50 | 10.32 | 89.68 |
VC4 | 53.27 | 46.73 | 0 | 100 |
VC5 | 82.35 | 17.65 | 0 | 100 |
VC6 | 86.69 | 13.31 | 0 | 100 |
VC7 | 88.72 | 11.28 | 0 | 100 |
VC8 | 63.16 | 26.80 | 10.04 | 89.96 |
VC9 | 83.81 | 16.19 | 0 | 100 |
VC10 | 81.13 | 13.60 | 5.27 | 94.73 |
VC11 | 89.14 | 10.86 | 0 | 100 |
VC12 | 83.40 | 16.60 | 0 | 100 |
视频片段编号 | aTPR | aTNR | aFPR | aAccuracy |
---|---|---|---|---|
VC3 | 41.18 | 58.57 | 0.25 | 99.75 |
VC8 | 63.16 | 36.78 | 0.06 | 99.94 |
VC10 | 81.13 | 18.86 | 0.01 | 99.99 |
Table 4 Evaluated values after analysis of space-time and spatial characteristics %
视频片段编号 | aTPR | aTNR | aFPR | aAccuracy |
---|---|---|---|---|
VC3 | 41.18 | 58.57 | 0.25 | 99.75 |
VC8 | 63.16 | 36.78 | 0.06 | 99.94 |
VC10 | 81.13 | 18.86 | 0.01 | 99.99 |
[1] |
李笑楠, 李天鹏, 张开创, 等. 多频谱发烟组件结构设计与遮蔽性能[J]. 兵工学报, 2023, 44(3): 910-918.
doi: 10.12382/bgxb/2021.0818 |
doi: 10.12382/bgxb/2021.0818 |
|
[2] |
郭爱强, 高欣宝, 李天鹏. 烟幕弹对制导弹药的干扰效能评估现状[J]. 兵器装备工程学报, 2021, 42(12): 64-71.
|
|
|
[3] |
徐路程, 郝雪颖, 肖凯涛, 等. 爆炸型烟幕弹遮蔽效能仿真研究[J]. 兵工学报, 2020, 41(7): 1299-1306.
doi: 10.3969/j.issn.1000-1093.2020.07.006 |
doi: 10.3969/j.issn.1000-1093.2020.07.006 |
|
[4] |
顾有林, 陈国龙, 胡以华, 等. 气溶胶沉降扩散研究进展(特邀)[J]. 红外与激光工程, 2022, 51(7):11-21.
|
|
|
[5] |
doi: 10.1016/j.dt.2021.09.017 |
[6] |
郭爱强, 高欣宝, 李天鹏, 等. 五帧差分法提取实测红外烟幕图像的特征参数[J]. 含能材料, 2021, 29(12):1144-1151.
|
|
|
[7] |
夏雪, 袁非牛, 章琳, 等. 从传统到深度:视觉烟雾识别、检测与分割[J]. 中国图象图形学报, 2019, 24(10): 1627-1647.
|
|
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
石志. 基于深度字典学习的纹理分类研究[D]. 南昌: 南昌大学, 2023: 25-41.
|
|
|
[18] |
doi: 10.1109/TCYB.2014.2307862 pmid: 25415948 |
[19] |
doi: 10.1109/TIP.2014.2310123 pmid: 24690574 |
[20] |
|
[21] |
王国平. 基于深度学习的快速火焰检测[D]. 淮安: 淮阴工学院, 2022.
|
|
|
[22] |
周兴华, 陈西江, 羊海东, 等. 动态卷积YOLOv5的视频火焰检测算法[J]. 测绘科学, 2023, 48(4):106-118.
|
|
|
[23] |
何惜琴, 陈冬冬. 于YUV颜色模型与导向滤波的图像去雾算法[J]. 液晶与显示, 2021, 36(8):1166-1173.
|
|
|
[24] |
|
[25] |
|
[26] |
陈浩, 高欣宝, 李天鹏, 等. 烟幕初始云团最大半径数值模拟[J]. 含能材料, 2018, 26(10):820-827.
|
|
|
[27] |
|
[28] |
|
[29] |
|
[30] |
谭永前, 曾凡菊. 基于凸包计算和小波变换的显著目标检测算法[J]. 兵器装备工程学报, 2023, 44(4):252-261.
|
|
|
[31] |
|
[32] |
|
[33] |
|
[1] | YANG Huanyu, WANG Jun, WU Xiang, BO Yuming, MA Lifeng, LU Jinlei. A Method for Military Aircraft Recognition Using a Coordinate Attention-based Deep Learning Network [J]. Acta Armamentarii, 2024, 45(7): 2128-2143. |
[2] | LIU Fang, LI Shiwei, LU Xi, GUO Ce’an. Prediction of Peak Overpressure of Underwater Cylindrical Charge Based on PSO-CNN-XGBoost [J]. Acta Armamentarii, 2024, 45(5): 1602-1612. |
[3] | LIU Yi, REN Jihuan, WU Xiang, BO Yuming. Newly Equipped Armored Vehicle Classification Based on Integrated Transfer Learning [J]. Acta Armamentarii, 2023, 44(8): 2319-2328. |
[4] | WU Liyang, GUO Pengcheng, LIU Chao, LI Wenqiang. Radar Signal Modulation Type Recognition Based on Attention Mechanism Enhanced Residual Networks [J]. Acta Armamentarii, 2023, 44(8): 2310-2318. |
[5] | ZHOU Yu, CAO Ronggang, LI Ping, MA Xiao. A Fuze Burst Point Detection Method for Outfield Test Images [J]. Acta Armamentarii, 2023, 44(8): 2453-2464. |
[6] | ZHANG Jian, SHEN Lin. Simulation Analysis and Experimental Verification of the Electrical Energy Power System for Underwater Vehicles [J]. Acta Armamentarii, 2023, 44(7): 2101-2113. |
[7] | HE Jincheng, HAN Yongcheng, ZHANG Wenwen, HE Weiji, CHEN Qian. True Color Low-Light Image Enhancement Based on Channel-Calibrated Convolution [J]. Acta Armamentarii, 2023, 44(6): 1643-1654. |
[8] | LIU Jia, LIU Hai’ou, CHEN Huiyan, MAO Feihong. Road Types Identification Method of Unmanned Tracked Vehicles Based on Fusion Features [J]. Acta Armamentarii, 2023, 44(5): 1267-1276. |
[9] | ZHANG Liang'an, CHEN Yang, XIE Shenglong, LIU Tongxin. Crack Detection System for Aircraft Protective Grill based on Machine Vision and Deep Learning [J]. Acta Armamentarii, 2023, 44(2): 507-516. |
[10] | DING Bosheng, ZHANG Ruiheng, XU Lixin, CHEN Huiming. Sand-dust Image Restoration Using Gray Compensation and Feature Fusion [J]. Acta Armamentarii, 2023, 44(10): 3115-3126. |
[11] | ZHU Hang, ZHANG Shu-ning, ZHAO Hui-chang. Single Channel Source Separation and Parameters Estimation of Multi-component PRBC-LFM Signal [J]. Acta Armamentarii, 2014, 35(9): 1363-1374. |
[12] | ZHANG Shu-ning, ZHU Hang, ZHAO Hui-chang, LIU Jing. Parameter Extraction Technique Based on Periodic Ambiguity for PRCPM-SFM Compound Fuze Signal [J]. Acta Armamentarii, 2014, 35(5): 627-633. |
[13] | XIN De-sheng, ZHANG Jian-jia, CHENG Yong-jie. Research on the Key Technology of the Semiconductor Laser Light Source with Highpower and Narrowpulse [J]. Acta Armamentarii, 2012, 33(12): 1485-1492. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||