Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (11): 3879-3891.doi: 10.12382/bgxb.2023.0949
Previous Articles Next Articles
ZHU Xiufang1,2, ZHOU Hongyuan3, ZHANG Hong1,*(), CHEN Xinmin2
Received:
2023-09-19
Online:
2024-01-25
Contact:
ZHANG Hong
CLC Number:
ZHU Xiufang, ZHOU Hongyuan, ZHANG Hong, CHEN Xinmin. Low Speed Impact Resistance of Gradient Encapsulated Circuit Board Structure[J]. Acta Armamentarii, 2024, 45(11): 3879-3891.
Add to citation manager EndNote|Ris|BibTeX
CNT含量 | 密度/ (g·cm-3) | 弹性 模量/GPa | 泊松比 | 极限 强度/MPa |
---|---|---|---|---|
纯EP | 1.12 | 5.59 | 0.32 | 55.36 |
0.1% | 1.12 | 6.06 | 0.32 | 58.47 |
0.3% | 1.13 | 6.24 | 0.32 | 59.17 |
0.5% | 1.13 | 6.85 | 0.32 | 67.51 |
0.7% | 1.13 | 7.95 | 0.32 | 79.52 |
PCB | 1.97 | 26.00 | 0.3 | 120 |
Table 2 Material parameters of finite element model
CNT含量 | 密度/ (g·cm-3) | 弹性 模量/GPa | 泊松比 | 极限 强度/MPa |
---|---|---|---|---|
纯EP | 1.12 | 5.59 | 0.32 | 55.36 |
0.1% | 1.12 | 6.06 | 0.32 | 58.47 |
0.3% | 1.13 | 6.24 | 0.32 | 59.17 |
0.5% | 1.13 | 6.85 | 0.32 | 67.51 |
0.7% | 1.13 | 7.95 | 0.32 | 79.52 |
PCB | 1.97 | 26.00 | 0.3 | 120 |
CNT 含量 | 输入点 | 断裂后直 接应力/ MPa | 直接断裂 应变/ MPa | 剪切传 递系数 | 裂纹展 开应变 |
---|---|---|---|---|---|
纯EP | 1 | 55.36 | 0 | 1 | 0 |
2 | 0 | 0.013 | 0 | 0.001 | |
0.1% | 1 | 58.47 | 0 | 1 | 0 |
2 | 0 | 0.015 | 0 | 0.001 | |
0.3% | 1 | 59.17 | 0 | 1 | 0 |
2 | 0 | 0.019 | 0 | 0.001 | |
0.5% | 1 | 67.51 | 0 | 1 | 0 |
2 | 0 | 0.021 | 0 | 0.001 | |
0.7% | 1 | 79.52 | 0 | 1 | 0 |
2 | 0 | 0.023 | 0 | 0.001 | |
PCB | 1 | 120 | 0 | 1 | 0 |
2 | 0 | 0.006 | 0 | 0.001 |
Table 3 Brittle fracture model of encapsulating materials with different CNT contents and PCB
CNT 含量 | 输入点 | 断裂后直 接应力/ MPa | 直接断裂 应变/ MPa | 剪切传 递系数 | 裂纹展 开应变 |
---|---|---|---|---|---|
纯EP | 1 | 55.36 | 0 | 1 | 0 |
2 | 0 | 0.013 | 0 | 0.001 | |
0.1% | 1 | 58.47 | 0 | 1 | 0 |
2 | 0 | 0.015 | 0 | 0.001 | |
0.3% | 1 | 59.17 | 0 | 1 | 0 |
2 | 0 | 0.019 | 0 | 0.001 | |
0.5% | 1 | 67.51 | 0 | 1 | 0 |
2 | 0 | 0.021 | 0 | 0.001 | |
0.7% | 1 | 79.52 | 0 | 1 | 0 |
2 | 0 | 0.023 | 0 | 0.001 | |
PCB | 1 | 120 | 0 | 1 | 0 |
2 | 0 | 0.006 | 0 | 0.001 |
[1] |
任辉启, 穆朝民, 刘瑞朝, 等. 精确制导武器侵彻效应与工程防护[M]. 北京: 科学出版社, 2016.
|
|
|
[2] |
焦敏. 高冲击环境下弹载引信灌封层对系统的防护分析和仿真研究[D]. 绵阳: 中国工程物理研究院, 2014.
|
|
|
[3] |
尹威华, 杨国来, 葛建立, 等. 弹载测试电路模块缓冲防护结构设计及优化[J]. 火炮发射与控制学报, 2016, 37(3): 56-60.
|
|
|
[4] |
|
[5] |
佟辉, 臧丽坤, 徐菊. 导热绝缘材料在电力电子器件封装中的应用[J]. 绝缘材料, 2021, 54(12): 1-9.
|
|
|
[6] |
关亚男, 王广奇. 微电路模块灌封工艺研究[J]. 微处理机, 2021, 42(1): 23-26.
|
|
|
[7] |
曹军生, 伍思豫, 向豪, 等. 橡胶增韧环氧树脂的研究进展[J]. 特种橡胶制品, 2023, 44(1): 58-62.
|
|
|
[8] |
鲁林, 李晓峰. 冲击环境作用下聚氨酯材料的应变率分布及吸能特性研究[J]. 兵工学报, 2015, 36 (增刊1): 213-219.
|
|
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
李芝华, 林伟, 谢科予, 等. 玻璃纤维填充聚氨酯改性环氧树脂灌封材料的性能[J]. 高分子材料科学与工程, 2009, 25(9): 47-49.
|
|
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
徐萧, 高世桥, 牛少华, 等. 灌封材料对侵彻过载下弹体器件的防护分析[J]. 兵工学报, 2017, 38(7): 1289-1300.
doi: 10.3969/j.issn.1000-1093.2017.07.006 |
|
[1] | CAO Luqing, QIAO Yang, XIE Jing, CHEN Pengwan. Study on Compressive Mechanical Properties of Graphene Aerogel [J]. Acta Armamentarii, 2024, 45(7): 2364-2373. |
[2] | ZHANG An, LI Changsheng, ZHANG He, MA Shaojie, YANG Benqiang. Experimental Study on IPM for Buffering and Energy Absorption [J]. Acta Armamentarii, 2024, 45(7): 2260-2269. |
[3] | YAN Song, JIANG Yi, DENG Yueguang, WEN Xianghua. Prediction and Optimization Method of Energy Absorption Characteristics of Thin-walled Metal Circular Pipe Filled with Aluminum Foam [J]. Acta Armamentarii, 2024, 45(6): 1954-1964. |
[4] | JIN Zehua, LIU Qingyang, MA Wenchao, MENG Junhu. Design of Anti-impact Structure with Novel Star-shaped Negative Poisson’s Ratio and Research on Water-entry Impact [J]. Acta Armamentarii, 2024, 45(5): 1497-1513. |
[5] | WANG Zhe, LIU Peng, CHEN Jing, HUANG Guangyan, ZHANG Hong. Blunt Trauma Resistance of Graphene and Polyethylene-modified Aramid Fabrics under Ballistic Impact [J]. Acta Armamentarii, 2024, 45(1): 35-43. |
[6] | LI Furong, RONG Jili, WANG Xi, CHEN Zichao, WEI Zhenqian, ZHAO Zitong. Research on Impact Resistance and Failure Modes of Pyramid Sandwich Panel Subjected to Underwater Explosion [J]. Acta Armamentarii, 2023, 44(7): 1954-1965. |
[7] | LI Zehao, XU Wenlong, WANG Cheng, JIA Shiyu, XUE Shengpeng, MA Dong. Experimental Study of Impact Energy Absorption of Aerogel Sandwich Structures [J]. Acta Armamentarii, 2023, 44(3): 682-690. |
[8] | CHEN Shenghui, GUO Yanfeng, FU Yungang, MA Xiaojiao, QIN Fang. Cushioning Energy Absorption of Four-layered Composite Tubes with Regular Pentagon and Hexagon Cross-sections under Axial Drop Impact [J]. Acta Armamentarii, 2023, 44(3): 876-885. |
[9] | HE Bo-ling, ZHAO Gui-ping, LU Tian-jian. Analysis of Vibration and Energy-absorption Characteristics of Sandwich Plates with Metallic Foam Cores andComposite Facesheets [J]. Acta Armamentarii, 2014, 35(2): 228-234. |
[10] | YANG Dong-li, XU Zheng-guo, YANG Jie, WANG Lin, YANG Yuan-sheng. Effects of Relative Density of Magnesium Alloy Foams on Their Dynamic Mechanical Properties [J]. Acta Armamentarii, 2013, 34(10): 1286-1290. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||