Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (5): 1497-1513.doi: 10.12382/bgxb.2022.1212
Previous Articles Next Articles
JIN Zehua1, LIU Qingyang1, MA Wenchao1, MENG Junhu1,2,*()
Received:
2022-12-03
Online:
2023-04-04
Contact:
MENG Junhu
CLC Number:
JIN Zehua, LIU Qingyang, MA Wenchao, MENG Junhu. Design of Anti-impact Structure with Novel Star-shaped Negative Poisson’s Ratio and Research on Water-entry Impact[J]. Acta Armamentarii, 2024, 45(5): 1497-1513.
Add to citation manager EndNote|Ris|BibTeX
参数 | 数值 |
---|---|
杨氏模量/GPa | 68.2 |
密度/(kg·m-3) | 2700 |
屈服应力/MPa | 80 |
泊松比 | 0.3 |
Table 1 Aluminum alloy matrix material parameters
参数 | 数值 |
---|---|
杨氏模量/GPa | 68.2 |
密度/(kg·m-3) | 2700 |
屈服应力/MPa | 80 |
泊松比 | 0.3 |
冲击速度/ (m·s-1) | 平台应力/MPa | 相对误差/% | |
---|---|---|---|
理论计算 | 数值模拟 | ||
1 | 1.472 | 1.548 | -4.91 |
5 | 1.786 | 1.879 | -4.95 |
70 | 5.017 | 5.255 | -4.53 |
80 | 6.142 | 6.451 | -4.79 |
Table 2 Plateau stresses of SQH structure at different impact velocities
冲击速度/ (m·s-1) | 平台应力/MPa | 相对误差/% | |
---|---|---|---|
理论计算 | 数值模拟 | ||
1 | 1.472 | 1.548 | -4.91 |
5 | 1.786 | 1.879 | -4.95 |
70 | 5.017 | 5.255 | -4.53 |
80 | 6.142 | 6.451 | -4.79 |
冲击速度/ (m·s-1) | 冲击比吸能 | ||
---|---|---|---|
UM-SQH/ (kJ·kg-1) | UM-SCH/ (kJ·kg-1) | (UM-SQH-UM-SCH)/ UM-SCH/% | |
1 | 1.904 | 1.479 | 28.74 |
30 | 5.666 | 3.907 | 45.02 |
100 | 12.551 | 11.727 | 7.03 |
Table 3 Comparison of SEAs of SQH structure and SCH structure
冲击速度/ (m·s-1) | 冲击比吸能 | ||
---|---|---|---|
UM-SQH/ (kJ·kg-1) | UM-SCH/ (kJ·kg-1) | (UM-SQH-UM-SCH)/ UM-SCH/% | |
1 | 1.904 | 1.479 | 28.74 |
30 | 5.666 | 3.907 | 45.02 |
100 | 12.551 | 11.727 | 7.03 |
冲击比吸能 | UM-SQH/ (kJ·kg-1) | UM-SSH/ (kJ·kg-1) | UM-SAH/ (kJ·kg-1) | UM-STH/ (kJ·kg-1) | UM-RSH/ (kJ·kg-1) | UM-SH/ (kJ·kg-1) | UM-RH/ (kJ·kg-1) |
---|---|---|---|---|---|---|---|
低速/(1m·s-1) | 1.904 | 0.682 | 0.584 | 1.104 | 0.427 | 0.526 | 0.233 |
中速/(30m·s-1) | 5.666 | 1.508 | 0.612 | 1.619 | 0.560 | 0.831 | 0.334 |
高速/(100m·s-1) | 12.551 | 10.914 | 1.690 | 10.821 | 4.349 | 10.146 | 2.642 |
Table 4 Comparison of SEAs of SQH structure and other structures with negative Poisson’s ratio
冲击比吸能 | UM-SQH/ (kJ·kg-1) | UM-SSH/ (kJ·kg-1) | UM-SAH/ (kJ·kg-1) | UM-STH/ (kJ·kg-1) | UM-RSH/ (kJ·kg-1) | UM-SH/ (kJ·kg-1) | UM-RH/ (kJ·kg-1) |
---|---|---|---|---|---|---|---|
低速/(1m·s-1) | 1.904 | 0.682 | 0.584 | 1.104 | 0.427 | 0.526 | 0.233 |
中速/(30m·s-1) | 5.666 | 1.508 | 0.612 | 1.619 | 0.560 | 0.831 | 0.334 |
高速/(100m·s-1) | 12.551 | 10.914 | 1.690 | 10.821 | 4.349 | 10.146 | 2.642 |
材料 | ρ/(kg·m-3) | 动力黏度μ/(Pa·s) |
---|---|---|
空气 | 1.29 | 1.79×10-5 |
水 | 103 | 1.01×10-3 |
Table 5 Material parameters of air and water
材料 | ρ/(kg·m-3) | 动力黏度μ/(Pa·s) |
---|---|---|
空气 | 1.29 | 1.79×10-5 |
水 | 103 | 1.01×10-3 |
参数 | 数值 |
---|---|
l1/mm | 2.6 |
l2/mm | 2.0 |
l3/mm | 3.1 |
l4/mm | 3.2 |
t/mm | 0.3 |
α/(°) | 45 |
θ1/(°) | 20 |
θ2/(°) | 22.5 |
L0/mm | 9.7 |
H0/mm | 9.7 |
Table 6 SQH sandwich structure unit cell size
参数 | 数值 |
---|---|
l1/mm | 2.6 |
l2/mm | 2.0 |
l3/mm | 3.1 |
l4/mm | 3.2 |
t/mm | 0.3 |
α/(°) | 45 |
θ1/(°) | 20 |
θ2/(°) | 22.5 |
L0/mm | 9.7 |
H0/mm | 9.7 |
[1] |
李宜果, 王聪, 武雨嫣, 等. 跨介质航行体高速入水空泡壁面运动特性[J]. 兵工学报, 2022, 43(3):574-585.
doi: 10.12382/bgxb.2021.0145 |
doi: 10.12382/bgxb.2021.0145 |
|
[2] |
袁绪龙, 栗敏, 丁旭拓, 等. 跨介质航行器高速入水冲击载荷特性[J]. 兵工学报, 2021, 42(7): 1440-1449.
|
doi: 10.3969/j.issn.1000-1093.2021.07.011 |
|
[3] |
王浩宇, 李木易, 程少华, 等. 航行体高速入水问题研究综述[J]. 宇航总体技术, 2021, 5(3):65-70.
|
|
|
[4] |
杨丽娟. 负刚度梁蜂窝结构的吸能与隔振特性研究[D]. 大连: 大连理工大学, 2021:4-7.
|
|
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
任毅如, 蒋宏勇, 金其多, 等. 仿生负泊松比拉胀内凹蜂窝结构耐撞性[J]. 航空学报, 2021, 42(3):314-324.
|
|
|
[10] |
|
[11] |
|
[12] |
李想, 严子铭, 柳占立, 等. 基于仿真和数据驱动的先进结构材料设计[J]. 力学进展, 2021, 51(1):82-105.
|
|
|
[13] |
|
[14] |
|
[15] |
|
[16] |
秦浩星, 杨德庆. 任意负泊松比超材料结构设计的功能基元拓扑优化法[J]. 复合材料学报, 2018, 35(4):1014-1023.
|
|
|
[17] |
杜义贤, 李荣, 徐明, 等. 负泊松比微结构拓扑优化设计[J]. 工程设计学报, 2018, 25(4): 450-456.
doi: 10.3785/j.issn.1006-754X.2018.04.012 |
|
|
[18] |
刘宇, 郝琪, 田钰楠, 等. 负泊松比基元蜂窝结构研究[J]. 机械科学与技术, 2021, 40(10):1629-1635.
|
|
|
[19] |
薛丁川. 基于拓扑优化方法的微观结构设计[D]. 大连: 大连理工大学, 2019:3-5.
|
|
|
[20] |
卢子兴, 武文博. 基于旋转三角形模型的负泊松比蜂窝材料面内动态压溃行为数值模拟[J]. 兵工学报, 2018, 39(1):153-160.
doi: 10.3969/j.issn.1000-1093.2018.01.017 |
|
|
[21] |
马芳武, 梁鸿宇, 赵颖, 等. 内凹三角形负泊松比材料的面内冲击动力学性能[J]. 振动与冲击, 2019, 38(17): 81-87.
|
|
|
[22] |
张会凯. 拓扑优化方法的力学超材料设计[D]. 大连: 大连理工大学, 2019: 6-11.
|
|
|
[23] |
|
[24] |
|
[25] |
沈振峰, 张新春, 白江畔, 等. 负泊松比内凹环形蜂窝结构的冲击响应特性研究[J]. 振动与冲击, 2020, 39(18):89-95.
|
|
|
[26] |
|
[27] |
|
[28] |
|
[29] |
胡锦顺, 林永水, 陈威, 等. 改进星形蜂窝结构面内动力学响应及能量吸收特性研究[J]. 振动与冲击, 2022, 41(23):119-128.
|
|
|
[30] |
魏海鹏, 史崇镔, 孙铁志, 等. 基于ALE方法的航行体高速入水缓冲降载性能数值研究[J]. 爆炸与冲击, 2021, 41(10):115-126.
|
|
|
[31] |
孙华. 弹塑性结构入水冲击问题研究[D]. 上海: 上海交通大学, 2018:25-32.
|
|
|
[32] |
桂蜀旺. 高速弹体入水冲击过程流固耦合分析[D]. 南京: 南京航空航天大学, 2020:8-16.
|
|
|
[33] |
马文朝, 孟繁敏, 马诺, 等. 跨介质飞行器头部外形优化及入水性能分析[J]. 兵工学报, 2022, 43(10):2588-2597.
|
doi: 10.12382/bgxb.2021.0538 |
|
[34] |
郝马帅. 结构高速入水仿真模拟及其防护研究[D]. 大连: 大连理工大学, 2020: 27-39.
|
|
|
[35] |
黄靖. 汽车碰撞过程中加速度特征对乘员损伤的影响分析[D]. 大连: 大连理工大学, 2009: 8-11.
|
|
[1] | WANG Zhe, LIU Peng, CHEN Jing, HUANG Guangyan, ZHANG Hong. Blunt Trauma Resistance of Graphene and Polyethylene-modified Aramid Fabrics under Ballistic Impact [J]. Acta Armamentarii, 2024, 45(1): 35-43. |
[2] | LIU Yan, WANG Baichuan, YAN Junbo, YAN Zichen, SHI Zhenqing, HUANG Fenglei. Dynamic Response of Honeycomb Sandwich Plate with Negative Poisson’s Ratio under Penetration [J]. Acta Armamentarii, 2023, 44(7): 1938-1953. |
[3] | CHEN Shenghui, GUO Yanfeng, FU Yungang, MA Xiaojiao, QIN Fang. Cushioning Energy Absorption of Four-layered Composite Tubes with Regular Pentagon and Hexagon Cross-sections under Axial Drop Impact [J]. Acta Armamentarii, 2023, 44(3): 876-885. |
[4] | LI Zehao, XU Wenlong, WANG Cheng, JIA Shiyu, XUE Shengpeng, MA Dong. Experimental Study of Impact Energy Absorption of Aerogel Sandwich Structures [J]. Acta Armamentarii, 2023, 44(3): 682-690. |
[5] | NIU Cao, GU Guangxin, ZHU Lei, XU Hongbin, LI Zhengyu, ZHANG Weihong, CHEN Yongwei, WANG Bo, SHI Jianxiong, LI Yizhe. Finite Element Structural Analysis and Topology Optimization of a Vehicle-borne Missile Launching Cradle [J]. Acta Armamentarii, 2023, 44(2): 437-451. |
[6] | LOU Li, FAN Jian-hua, XU Cheng. Research on Topologically Optimized Anti-jamming Technology for Tactical MANETs [J]. Acta Armamentarii, 2016, 37(9): 1662-1669. |
[7] | HE Bo-ling, ZHAO Gui-ping, LU Tian-jian. Analysis of Vibration and Energy-absorption Characteristics of Sandwich Plates with Metallic Foam Cores andComposite Facesheets [J]. Acta Armamentarii, 2014, 35(2): 228-234. |
[8] | YANG Dong-li, XU Zheng-guo, YANG Jie, WANG Lin, YANG Yuan-sheng. Effects of Relative Density of Magnesium Alloy Foams on Their Dynamic Mechanical Properties [J]. Acta Armamentarii, 2013, 34(10): 1286-1290. |
[9] | SUN Quan-zhao, YANG Guo-lai, GE Jian-li. Improved Design for Top Carriage of a Gun [J]. Acta Armamentarii, 2012, 33(11): 1281-1285. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||