Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (7): 2374-2382.doi: 10.12382/bgxb.2023.0260
Previous Articles Next Articles
LIU Yu1, LU Shufan1, SUO Tao1, HOU Bing1, FAN Zhiqiang2, LI Yuan1,*()
Received:
2023-03-28
Online:
2023-07-18
Contact:
LI Yuan
CLC Number:
LIU Yu, LU Shufan, SUO Tao, HOU Bing, FAN Zhiqiang, LI Yuan. Experimental Study on the Effect of Liquid-filled Tube Structure on Shock Wave Attenuation[J]. Acta Armamentarii, 2024, 45(7): 2374-2382.
Add to citation manager EndNote|Ris|BibTeX
试验 编号 | 填充液 | 膜片厚 度/mm | 高压段初始 压力/MPa | 冲击波超压 峰值/MPa | 冲击波超压峰值 衰减百分比/% | 比冲量/ (Pa·s) | 比冲量衰减 百分比/% |
---|---|---|---|---|---|---|---|
c1-0-1 | 0.1 | 0.44 | 0.155 | 0 | 434 | 0 | |
c1-0-2 | 0.2 | 0.80 | 0.232 | 0 | 996 | 0 | |
c2-1-1 | 空气 | 0.1 | 0.44 | 0.140 | 9.68 | 339 | 21.81 |
c2-1-2 | 空气 | 0.2 | 0.80 | 0.217 | 6.47 | 715 | 28.21 |
c2-2-1 | 水 | 0.1 | 0.44 | 0.107 | 30.97 | 394 | 9.29 |
c2-2-2 | 水 | 0.2 | 0.80 | 0.183 | 21.12 | 753 | 24.40 |
c2-3-1 | 0.6%AMCS | 0.1 | 0.44 | 0.146 | 5.81 | 425 | 2.15 |
c2-3-2 | 0.6%AMCS | 0.2 | 0.80 | 0.208 | 10.34 | 732 | 26.51 |
c2-4-1 | 1.1%AMCS | 0.1 | 0.44 | 0.148 | 4.52 | 426 | 1.76 |
c2-4-2 | 1.1%AMCS | 0.2 | 0.80 | 0.200 | 13.79 | 809 | 18.78 |
c2-5-1 | 2.2%AMCS | 0.1 | 0.44 | 0.124 | 20.00 | 339 | 21.87 |
c2-5-2 | 2.2%AMCS | 0.2 | 0.80 | 0.200 | 13.79 | 713 | 28.41 |
Table 1 One-sided opening filling structure and test results
试验 编号 | 填充液 | 膜片厚 度/mm | 高压段初始 压力/MPa | 冲击波超压 峰值/MPa | 冲击波超压峰值 衰减百分比/% | 比冲量/ (Pa·s) | 比冲量衰减 百分比/% |
---|---|---|---|---|---|---|---|
c1-0-1 | 0.1 | 0.44 | 0.155 | 0 | 434 | 0 | |
c1-0-2 | 0.2 | 0.80 | 0.232 | 0 | 996 | 0 | |
c2-1-1 | 空气 | 0.1 | 0.44 | 0.140 | 9.68 | 339 | 21.81 |
c2-1-2 | 空气 | 0.2 | 0.80 | 0.217 | 6.47 | 715 | 28.21 |
c2-2-1 | 水 | 0.1 | 0.44 | 0.107 | 30.97 | 394 | 9.29 |
c2-2-2 | 水 | 0.2 | 0.80 | 0.183 | 21.12 | 753 | 24.40 |
c2-3-1 | 0.6%AMCS | 0.1 | 0.44 | 0.146 | 5.81 | 425 | 2.15 |
c2-3-2 | 0.6%AMCS | 0.2 | 0.80 | 0.208 | 10.34 | 732 | 26.51 |
c2-4-1 | 1.1%AMCS | 0.1 | 0.44 | 0.148 | 4.52 | 426 | 1.76 |
c2-4-2 | 1.1%AMCS | 0.2 | 0.80 | 0.200 | 13.79 | 809 | 18.78 |
c2-5-1 | 2.2%AMCS | 0.1 | 0.44 | 0.124 | 20.00 | 339 | 21.87 |
c2-5-2 | 2.2%AMCS | 0.2 | 0.80 | 0.200 | 13.79 | 713 | 28.41 |
试验 编号 | 缓冲剂 | 膜片厚 度/mm | 初始压 力/MPa | 冲击波超压 峰值/MPa | 冲击波超压峰值 衰减百分比/% | 比冲量/ (Pa·s) | 比冲量衰减 百分比/% |
---|---|---|---|---|---|---|---|
c3-1-1 | 水 | 0.1 | 0.44 | 0.100 | 35.48 | 306 | 29.63 |
c3-1-2 | 水 | 0.2 | 0.80 | 0.185 | 20.26 | 630 | 36.75 |
Table 2 Test results of double-sided open liquid-filled structure specimens
试验 编号 | 缓冲剂 | 膜片厚 度/mm | 初始压 力/MPa | 冲击波超压 峰值/MPa | 冲击波超压峰值 衰减百分比/% | 比冲量/ (Pa·s) | 比冲量衰减 百分比/% |
---|---|---|---|---|---|---|---|
c3-1-1 | 水 | 0.1 | 0.44 | 0.100 | 35.48 | 306 | 29.63 |
c3-1-2 | 水 | 0.2 | 0.80 | 0.185 | 20.26 | 630 | 36.75 |
[1] |
|
[2] |
|
[3] |
柳占立, 杜智博, 张家瑞, 等. 颅脑爆炸伤致伤机制及防护研究进展[J]. 爆炸与冲击, 2022, 42(4): 4-27.
|
|
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
doi: 10.1039/c8cc06378h pmid: 30252001 |
[20] |
|
[21] |
|
[22] |
|
[23] |
王维和. 终点弹道学原理[Z]. 北京: 国防工业出版社, 1988.
|
|
[1] | XU Yongkang, XUE Kun. Artificial Neural Network-based Prediction Model for Damage Effect of Fuel-air Explosive [J]. Acta Armamentarii, 2024, 45(6): 1889-1905. |
[2] | FAN Ruijun, WANG Xiaofeng, WANG Jinying, ZHOU Jie, WANG Shaohong, PI Aiguo. Effect of Active Material Content on the Near-field Shock Wave of Low Collateral Damage Bomb [J]. Acta Armamentarii, 2024, 45(5): 1613-1624. |
[3] | LIU Fang, LI Shiwei, LU Xi, GUO Ce’an. Prediction of Peak Overpressure of Underwater Cylindrical Charge Based on PSO-CNN-XGBoost [J]. Acta Armamentarii, 2024, 45(5): 1602-1612. |
[4] | ZHANG Yulei, CHEN Hua, YUAN Jianfei, JI Jianrong, FENG Xiaojun, LIU Yan. Non-even Distribution Characteristics of Explosion Shock Wave Overpressure and Optimal Number of Measuring Points [J]. Acta Armamentarii, 2024, 45(3): 744-753. |
[5] | YU Wenjun, CHEN Shengyun, DENG Shuxin, YU Bingbing, JIN Dongyan. Numerical Simulation of the Propagation Law of Explosion Shock Wave in Turning Tunnel [J]. Acta Armamentarii, 2023, 44(S1): 180-188. |
[6] | ZHOU Yuelan, PEI Lu, LONG Renrong, ZHANG Qingming, LIU Bowen, REN Jiankang. Study on the Evolution Characteristics of Pressure Pulse in Shock Tube and a Method of Simulating Air Explosion Shock Wave [J]. Acta Armamentarii, 2023, 44(12): 3815-3825. |
[7] | YANG Lei, LIU Han, HUANG Guangyan, TIAN Xiangpeng. Protection Performance of Typical Explosion-proof Equipment Against TNT Blast Shock Wave [J]. Acta Armamentarii, 2023, 44(10): 2871-2884. |
[8] | XIONG Manman, QIN Bin, XU Cheng, AN Shuo, WU Yang. Dynamic Physical Response Law of Protected/Unprotected Head Surrogate Under Shock Wave [J]. Acta Armamentarii, 2022, 43(9): 2182-2189. |
[9] | WU Yang, QIN Bin, WANG Shu, XIONG Manman, AN Shuo, LU Haitao, ZHANG Xianfeng. Protective Performance of Helmet Based on Blast Shock Wave [J]. Acta Armamentarii, 2022, 43(9): 2121-2128. |
[10] | HUANG Xiaolong, LI Ning, KANG Yang, WENG Chunsheng. Acoustic Characteristics of Gas-Liquid Multi-Cycle Pulsed Detonation Tube [J]. Acta Armamentarii, 2022, 43(10): 2621-2630. |
[11] | WANG Shushan, LIANG Ce, GAO Yuan, GUI Qiuyang, LIU Jianhu, SHENG Zhenxin. Engineering Model for Calculating Secondary Pressure Wave Overpressure Peak in Deep Water Explosion [J]. Acta Armamentarii, 2022, 43(10): 2508-2516. |
[12] | WANG Cheng, YANG Jingyu, CHI Liyuan, WANG Wanli, CHEN Tainian. On the Blast Resistance Performance of Large-scale Reinforced Concrete Wall [J]. Acta Armamentarii, 2022, 43(1): 131-139. |
[13] | WEI Wanli, ZHENG Quan, LU Jiangtao, WENG Chunsheng, WU Yuwen. Effect of Central Cone on Working Process and Performance of Liquid-fueled Rotating Detonation Engine [J]. Acta Armamentarii, 2021, 42(6): 1185-1194. |
[14] | WANG Quan, LU Junwei, LI Zhimin, LIN Chaojian, LI Xuejiao, CHENG Yangfan, LI Rui. Propagation Law of Explosion Wave in Columnar Explosion Tank under Vacuum Conditions [J]. Acta Armamentarii, 2021, 42(6): 1250-1256. |
[15] | DAI Xianghui, DUAN Jian, SHEN Zikai, WANG Kehui, LI Mingrui, LI Pengjie, ZHENG Yafeng, ZHOU Gang. Experiment of Slow Cook-off Response Characteristics of Penetrator [J]. Acta Armamentarii, 2020, 41(2): 291-297. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||