Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (1): 219-230.doi: 10.12382/bgxb.2023.0362
Previous Articles Next Articles
ZHOU Yue1, LI Zhuangzhuang1, ZHENG Ranshun2, LI Jun1,*()
Received:
2023-04-21
Online:
2024-01-30
Contact:
LI Jun
CLC Number:
ZHOU Yue, LI Zhuangzhuang, ZHENG Ranshun, LI Jun. Research on Safe Separation Mechanism of UAV Rocket Booster[J]. Acta Armamentarii, 2024, 45(1): 219-230.
Add to citation manager EndNote|Ris|BibTeX
符号 | 定义 | 符号 | 定义 |
---|---|---|---|
m1/kg | 驱动体质量 | m2/kg | 发动机分离质量 |
O1/mm | 駆动体质心 | O2/mm | 发动机质心 |
m3/kg | 助推机构质量 | O3/mm | 助推机构质心 |
(x1,y1)/mm | 驱动体质心坐标 | (x2,y2)/mm | 助推发动机质心坐标 |
I1/(kg·m2) | 驱动体转动惯量 | I2/(kg·m2) | 助推发动机转动惯量 |
(x3,y3)/mm | 助推机构质心坐标 | I3/(kg·m2) | 助推机构转动惯量 |
l1/mm | 驱动体长度 | l2/m | 助推发动机长度 |
r0/mm | 基座转轴半径 | r/mm | 助推发动机半径 |
α/(°) | 推力角 | γ/(°) | 仰角 |
β/(°) | 滑槽角 | Fmax/N | 推力峰值 |
δ/mm | 推力偏置距离 | Ft/N | 稳定推力值 |
Table 1 Structure parameters of booster
符号 | 定义 | 符号 | 定义 |
---|---|---|---|
m1/kg | 驱动体质量 | m2/kg | 发动机分离质量 |
O1/mm | 駆动体质心 | O2/mm | 发动机质心 |
m3/kg | 助推机构质量 | O3/mm | 助推机构质心 |
(x1,y1)/mm | 驱动体质心坐标 | (x2,y2)/mm | 助推发动机质心坐标 |
I1/(kg·m2) | 驱动体转动惯量 | I2/(kg·m2) | 助推发动机转动惯量 |
(x3,y3)/mm | 助推机构质心坐标 | I3/(kg·m2) | 助推机构转动惯量 |
l1/mm | 驱动体长度 | l2/m | 助推发动机长度 |
r0/mm | 基座转轴半径 | r/mm | 助推发动机半径 |
α/(°) | 推力角 | γ/(°) | 仰角 |
β/(°) | 滑槽角 | Fmax/N | 推力峰值 |
δ/mm | 推力偏置距离 | Ft/N | 稳定推力值 |
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
γ/(°) | 10 | r0/m | 0.025 |
α/(°) | 25 | β/(°) | 待优化 |
(x3,y3)/m | $\left(\frac{0.5 l_{1}+6 \times\left(l_{1}+0.268\right)}{m_{1}+7}, 0\right) $ | m2/kg | 6 |
I3/(kg·m-2) | m1(0.0075+ )+6(l1+0.268-x3)2+m1(x3- l1)2+0.1474 | (x2,y2)/m | (l1+0.268,0) |
δ/m | 0.015 | I2/(kg·m-2) | 0.1474 |
m1/kg | 待优化 | l2/m | 0.536 |
(x1,y1)/m | ( l1,0) | r/m | 0.05 |
I1/(kg·m-2) | m1(0.0075+ ) | Fmax/kN | 9.3 |
l1/m | 待优化 | Ft/kN | 8.0 |
Table 2 Parameters of a UAV booster
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
γ/(°) | 10 | r0/m | 0.025 |
α/(°) | 25 | β/(°) | 待优化 |
(x3,y3)/m | $\left(\frac{0.5 l_{1}+6 \times\left(l_{1}+0.268\right)}{m_{1}+7}, 0\right) $ | m2/kg | 6 |
I3/(kg·m-2) | m1(0.0075+ )+6(l1+0.268-x3)2+m1(x3- l1)2+0.1474 | (x2,y2)/m | (l1+0.268,0) |
δ/m | 0.015 | I2/(kg·m-2) | 0.1474 |
m1/kg | 待优化 | l2/m | 0.536 |
(x1,y1)/m | ( l1,0) | r/m | 0.05 |
I1/(kg·m-2) | m1(0.0075+ ) | Fmax/kN | 9.3 |
l1/m | 待优化 | Ft/kN | 8.0 |
助推发动机相关参数 | 数值 |
---|---|
质量/kg | 6.0±0.1 |
质心距离 /mm | 322.6 |
质心赤道转动惯量Ixc/(kg·mm2) | 80445.0 |
质心赤道转动惯量Izc/(kg·mm2) | 80445.1 |
质心极转动惯量Iyc/(kg·mm2) | 3701.0 |
Table 3 Experimental model data
助推发动机相关参数 | 数值 |
---|---|
质量/kg | 6.0±0.1 |
质心距离 /mm | 322.6 |
质心赤道转动惯量Ixc/(kg·mm2) | 80445.0 |
质心赤道转动惯量Izc/(kg·mm2) | 80445.1 |
质心极转动惯量Iyc/(kg·mm2) | 3701.0 |
前后端坐标 差值 | 时间/s | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 | |
前端Y坐标差值/mm | 0 | 1.24 | 2.69 | 0.06 | -2.78 | -4.72 | 1.00 | 5.64 | 5.05 | 1.85 | 0.45 |
前端Z坐标差值/mm | 0 | -0.71 | -1.38 | -1.37 | -7.27 | -7.55 | -15.16 | -33.69 | -58.43 | -88.34 | -150.11 |
后端Y坐标差值/mm | 10.85 | 8.45 | 0.26 | 8.88 | -11.01 | -6.94 | -11.45 | -19.43 | -29.26 | -37.43 | -55.77 |
后端Z坐标差值/mm | 17.24 | 7.31 | -0.08 | 11.11 | -5.01 | -0.51 | -10.05 | -25.63 | -44.50 | -72.55 | -114.53 |
Table 4 Difference between the coordinates of front-end and back-end of booster
前后端坐标 差值 | 时间/s | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 | |
前端Y坐标差值/mm | 0 | 1.24 | 2.69 | 0.06 | -2.78 | -4.72 | 1.00 | 5.64 | 5.05 | 1.85 | 0.45 |
前端Z坐标差值/mm | 0 | -0.71 | -1.38 | -1.37 | -7.27 | -7.55 | -15.16 | -33.69 | -58.43 | -88.34 | -150.11 |
后端Y坐标差值/mm | 10.85 | 8.45 | 0.26 | 8.88 | -11.01 | -6.94 | -11.45 | -19.43 | -29.26 | -37.43 | -55.77 |
后端Z坐标差值/mm | 17.24 | 7.31 | -0.08 | 11.11 | -5.01 | -0.51 | -10.05 | -25.63 | -44.50 | -72.55 | -114.53 |
[1] |
于存贵, 李志刚. 火箭发射系统分析[M]. 北京: 国防工业出版社, 2012.
|
|
|
[2] |
张琳, 龚喜盈, 张晓辉. 火箭助推零长发射建模仿真研究[J]. 火力与指挥控制, 2019, 44(8):150-154.
|
|
|
[3] |
|
[4] |
|
[5] |
姚琳, 王晓东. 无人机助推起飞过程影响因素敏感度分析[J]. 兵器装备工程学报, 2020, 41(10):81-85.
|
|
|
[6] |
刘付平, 郑耀, 谢芳芳, 等. 助推火箭安装偏差对小型无人机发射安全的影响[J]. 哈尔滨工程大学学报, 2018, 39(8):1343-1348.
|
|
|
[7] |
陶于金. 小型固定翼无人机零长发射参数安全边界研究[J]. 海军航空工程学院学报, 2017, 32(5):447-451,468.
|
|
|
[8] |
王晓东, 夏杨, 涂金岽. 一种无人机火箭助推器脱落导向结构: CN211281514U[P]. 2020-08-18.
|
|
|
[9] |
陈刚. 无人机单(双)火箭助推发射安全性对比分析[J]. 四川兵工学报, 2021, 42(8): 27-32.
|
|
|
[10] |
|
[11] |
doi: 10.1016/j.apm.2023.03.030 URL |
[12] |
乐文超, 朱晓, 宁月敏, 等. 基于fmincon的扭杆悬架弹簧优化设计[J]. 上海汽车, 2018(6): 13-18.
|
|
|
[13] |
doi: 10.1016/j.ijmecsci.2022.107771 URL |
[14] |
doi: 10.1016/j.vehcom.2023.100600 URL |
[15] |
doi: 10.1016/j.ast.2023.108257 URL |
[16] |
王盼, 吴昊, 梁宇, 等. 轻型无人机起落架设计与强度分析[J]. 兵工学报, 2022, 43(增刊1):140-145.
|
doi: 10.12382/bgxb.2022.A023 |
|
[17] |
doi: 10.1016/j.mechmachtheory.2020.104140 URL |
[18] |
doi: 10.1016/j.ast.2023.108156 URL |
[19] |
doi: 10.1016/j.ast.2023.108253 URL |
[20] |
doi: 10.1016/j.ast.2022.108063 URL |
[1] | LU Ying, PANG Lichen, CHEN Yusi, SONG Wanying, FU Yanfang. A Swarm Intelligence Algorithm for UAV Path Planning in Urban Warfare [J]. Acta Armamentarii, 2023, 44(S2): 146-156. |
[2] | CAO Zhengyang, ZHANG Bing, BAI Yixuan, GOU Kenan. Multi-UAV Cooperative Navigation Method Based on Fusion of GNSS/INS/VNS Positioning Information [J]. Acta Armamentarii, 2023, 44(S2): 157-166. |
[3] | YANG Jiaxiu, LI Xinkai, ZHANG Hongli, WANG Hao. Robust Tracking of Quadrotor UAVs Based on Integral Reinforcement Learning [J]. Acta Armamentarii, 2023, 44(9): 2802-2813. |
[4] | CAO Yan, LONG Teng, SUN Jingliang, ZHOU Yuze. Distributed Task Allocation Algorithm for Multiple Unmanned Aerial Vehicle Based on Information Retransmission and Package Loss Compensation [J]. Acta Armamentarii, 2023, 44(9): 2697-2708. |
[5] | LI Zenglin, LI Bo, BAI Shuangxia, MENG Bobo. UAV Autonomous Air Combat Decision-making Based on AM-SAC [J]. Acta Armamentarii, 2023, 44(9): 2849-2858. |
[6] | ZHAO Junmin, HE Haozhe, WANG Shaoqi, NIE Cong, JIAO Yingjie. Joint Trajectory Planning for Multiple UAVs Target Tracking and Obstacle Avoidance in a Complicated Environment [J]. Acta Armamentarii, 2023, 44(9): 2685-2696. |
[7] | HAN Yu, SONG Tao, ZHENG Duo, LIU Xin. Unmanned Aerial Vehicle Cluster Cooperative Guidance Technology Based on Conflict Trigger Mechanism [J]. Acta Armamentarii, 2023, 44(7): 1881-1895. |
[8] | ZHANG Kun, LIU Zekun, HUA Shuai, ZHANG Zhenchong, LI Ke, YU Jingting. Generation of Multi-UAV Four-dimensional Cooperative Attack Route Based on T/S-SAS [J]. Acta Armamentarii, 2023, 44(6): 1576-1587. |
[9] | ZHENG Lei, CHEN Zhimin, JIA Yuxuan. UAV Swarm Tracking Method Based on Wide-Area Deployment of Intelligent Reflecting Surfaces [J]. Acta Armamentarii, 2023, 44(6): 1837-1845. |
[10] | FU Jinbo, ZHANG Dong, WANG Mengyang, ZHAO Junmin. Unmanned Aerial Vehicle Path Planning for Improved Target Positioning Accuracy [J]. Acta Armamentarii, 2023, 44(11): 3394-3406. |
[11] | WANG Kang, SI Peng, CHEN Li, LI Zhongxin, WU Zhilin. 3D Path Planning of Unmanned Aerial Vehicle Based on Enhanced Sand Cat Swarm Optimization Algorithm [J]. Acta Armamentarii, 2023, 44(11): 3382-3393. |
[12] | LIU Zhong, GAO Xiao-guang, FU Xiao-wei, MOU Zhi-ying. Coalition Formation of Multiple Heterogeneous Unmanned Aerial Vehicles in Cooperative Search and Attack in UnknownEnvironment [J]. Acta Armamentarii, 2015, 36(12): 2284-2297. |
[13] | WANG Xiao-peng, WANG Yu-shi, WEN Quan, FENG Yan-zhe, SU Hong-wei. Force Analysis for the Fuze on the Motion of a Unrotating Projectile Around the Center of Mass in Exterior Ballistics [J]. Acta Armamentarii, 2015, 36(1): 53-57. |
[14] | TANG Chuan-lin,HUANG Chang-qiang,DU Hai-wen,HUANG Han-qiao,DING Da-li,LUO Chang. Study of Trajectory Planning for UCAV Formation Cooperative Attack [J]. Acta Armamentarii, 2014, 35(4): 523-530. |
[15] | LIU Zhong, GAO Xiao-guang, FU Xiao-wei, XI Wen-qing. Three-dimensional Path tracking Guidance and Control for Unmanned Aerial Vehicle Based on Back-stepping andNonlinear Dynamic Inversion [J]. Acta Armamentarii, 2014, 35(12): 2030-2040. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||