Acta Armamentarii ›› 2023, Vol. 44 ›› Issue (9): 2600-2610.doi: 10.12382/bgxb.2022.1147
Special Issue: 智能系统与装备技术
Previous Articles Next Articles
HUI Kanghua1, YANG Wei1, LIU Haohan1, ZHANG Zhi1,*(), ZHENG Jin2, BAI Xiao2
Received:
2022-11-30
Online:
2023-04-10
Contact:
ZHANG Zhi
CLC Number:
HUI Kanghua, YANG Wei, LIU Haohan, ZHANG Zhi, ZHENG Jin, BAI Xiao. Enhanced Multi-scale Target Detection Method Based on YOLOv5[J]. Acta Armamentarii, 2023, 44(9): 2600-2610.
Add to citation manager EndNote|Ris|BibTeX
锚框算法 | 数据集 | 召回 率/% | mAP (0.5)/% | mAP 0.5∶0.95/% |
---|---|---|---|---|
Kmeans | VOC2012 | 78.8 | 84.1 | 60.4 |
Kmeans++ | VOC2012 | 79.8 | 84.7 | 60.8 |
GMM | VOC2012 | 79.6 | 84.8 | 61.0 |
Agglomerative | VOC2012 | 76.6 | 83.8 | 58.7 |
Kmeans | COCO | 51.7 | 57.2 | 37.8 |
Kmeans++ | COCO | 52.7 | 57.4 | 38.1 |
GMM | COCO | 50.2 | 54.3 | 34.6 |
Agglomerative | COCO | 50.8 | 55.6 | 35.4 |
Kmeans | VisDrone | 33.5 | 34.5 | 18.8 |
Kmeans++ | VisDrone | 35 | 35.4 | 19.4 |
GMM | VisDrone | 32.6 | 33.8 | 16.6 |
Agglomerative | VisDrone | 33.2 | 34.1 | 17.2 |
Table 1 Initial anchor comparison
锚框算法 | 数据集 | 召回 率/% | mAP (0.5)/% | mAP 0.5∶0.95/% |
---|---|---|---|---|
Kmeans | VOC2012 | 78.8 | 84.1 | 60.4 |
Kmeans++ | VOC2012 | 79.8 | 84.7 | 60.8 |
GMM | VOC2012 | 79.6 | 84.8 | 61.0 |
Agglomerative | VOC2012 | 76.6 | 83.8 | 58.7 |
Kmeans | COCO | 51.7 | 57.2 | 37.8 |
Kmeans++ | COCO | 52.7 | 57.4 | 38.1 |
GMM | COCO | 50.2 | 54.3 | 34.6 |
Agglomerative | COCO | 50.8 | 55.6 | 35.4 |
Kmeans | VisDrone | 33.5 | 34.5 | 18.8 |
Kmeans++ | VisDrone | 35 | 35.4 | 19.4 |
GMM | VisDrone | 32.6 | 33.8 | 16.6 |
Agglomerative | VisDrone | 33.2 | 34.1 | 17.2 |
结构 | 数据集 | 召回 率/% | mAP@ 0.5/% | mAP@ 0.5∶0.95/% | 参数 量 |
---|---|---|---|---|---|
C3 | VOC2012 | 78.8 | 84.1 | 60.4 | 7.0 |
C3 | VisDrone | 33.5 | 34.5 | 18.8 | 7.0 |
EM-C3 | VOC2012 | 79.9 | 85.7 | 65.4 | 8.4 |
EM-C3 | VisDrone | 35.2 | 35.8 | 20.4 | 8.4 |
Table 2 Comparison results of EM-C3 and C3 structures
结构 | 数据集 | 召回 率/% | mAP@ 0.5/% | mAP@ 0.5∶0.95/% | 参数 量 |
---|---|---|---|---|---|
C3 | VOC2012 | 78.8 | 84.1 | 60.4 | 7.0 |
C3 | VisDrone | 33.5 | 34.5 | 18.8 | 7.0 |
EM-C3 | VOC2012 | 79.9 | 85.7 | 65.4 | 8.4 |
EM-C3 | VisDrone | 35.2 | 35.8 | 20.4 | 8.4 |
模型 | 召回 率/% | mAP @0.5/% | mAP@ 0.5∶0.95/% | 参数 量/M |
---|---|---|---|---|
YOLOv5s | 78.8 | 84.1 | 60.4 | 7.0 |
YOLOv5m | 82.0 | 87.6 | 67.1 | 20.9 |
YOLOv5l | 85.1 | 89.1 | 69.3 | 46.2 |
YOLOv5s-EM_C3 | 79.9 | 85.7 | 65.4 | 8.4 |
YOLOv5m-EM_C3 | 84.2 | 88.3 | 69.2 | 24.2 |
YOLOv5l-EM_C3 | 85.5 | 89.3 | 70.6 | 52.1 |
Table 3 Comparison results of EM-C3 and C3 structures
模型 | 召回 率/% | mAP @0.5/% | mAP@ 0.5∶0.95/% | 参数 量/M |
---|---|---|---|---|
YOLOv5s | 78.8 | 84.1 | 60.4 | 7.0 |
YOLOv5m | 82.0 | 87.6 | 67.1 | 20.9 |
YOLOv5l | 85.1 | 89.1 | 69.3 | 46.2 |
YOLOv5s-EM_C3 | 79.9 | 85.7 | 65.4 | 8.4 |
YOLOv5m-EM_C3 | 84.2 | 88.3 | 69.2 | 24.2 |
YOLOv5l-EM_C3 | 85.5 | 89.3 | 70.6 | 52.1 |
模型 | 输入尺寸 | mAP@0.5/% | mAP@0.5∶0.95/% | P/% | R/% | 推理时间/ms | 参数量/M |
---|---|---|---|---|---|---|---|
YOLOv5s-efficientNetv2 | 640 | 80.3 | 54.2 | 80.2 | 74.4 | 4.7 | 8.2 |
YOLOv5-GhostNet | 640 | 81.6 | 57.3 | 80.7 | 76.3 | 3.6 | 6.3 |
YOLOv3 | 640 | 88.0 | 67.5 | 83.7 | 84.5 | 16.9 | 61.6 |
YOLOv3-spp | 640 | 88.6 | 68.9 | 85.4 | 82.8 | 17.2 | 62.7 |
YOLOv3-tiny | 640 | 63.7 | 31.6 | 62.8 | 62.3 | 2.9 | 8.7 |
SSD | 640 | 71.7 | 42.3 | — | — | — | 200 |
Faster RCNN | 640 | 79.1 | 51.3 | — | — | — | 460 |
YOLOv5s | 640 | 84.1 | 60.4 | 82.1 | 78.8 | 4 | 7.0 |
YOLOv5m | 640 | 87.6 | 67.1 | 84.4 | 82.0 | 6.5 | 20.9 |
YOLOv5l | 640 | 89.1 | 69.3 | 84.1 | 85.1 | 9.9 | 46.2 |
EM-YOLOv5s | 640 | 86.6 | 65.6 | 84.3 | 80.4 | 5.9 | 8.4 |
EM-YOLOv5m | 640 | 88.7 | 69.7 | 83.4 | 84.7 | 14 | 24.2 |
EM-YOLOv5l | 640 | 89.3 | 71.7 | 84.2 | 85.7 | 29.6 | 52.1 |
Table 4 Comparative experiment between EM-YOLOv5 and mainstream detection models
模型 | 输入尺寸 | mAP@0.5/% | mAP@0.5∶0.95/% | P/% | R/% | 推理时间/ms | 参数量/M |
---|---|---|---|---|---|---|---|
YOLOv5s-efficientNetv2 | 640 | 80.3 | 54.2 | 80.2 | 74.4 | 4.7 | 8.2 |
YOLOv5-GhostNet | 640 | 81.6 | 57.3 | 80.7 | 76.3 | 3.6 | 6.3 |
YOLOv3 | 640 | 88.0 | 67.5 | 83.7 | 84.5 | 16.9 | 61.6 |
YOLOv3-spp | 640 | 88.6 | 68.9 | 85.4 | 82.8 | 17.2 | 62.7 |
YOLOv3-tiny | 640 | 63.7 | 31.6 | 62.8 | 62.3 | 2.9 | 8.7 |
SSD | 640 | 71.7 | 42.3 | — | — | — | 200 |
Faster RCNN | 640 | 79.1 | 51.3 | — | — | — | 460 |
YOLOv5s | 640 | 84.1 | 60.4 | 82.1 | 78.8 | 4 | 7.0 |
YOLOv5m | 640 | 87.6 | 67.1 | 84.4 | 82.0 | 6.5 | 20.9 |
YOLOv5l | 640 | 89.1 | 69.3 | 84.1 | 85.1 | 9.9 | 46.2 |
EM-YOLOv5s | 640 | 86.6 | 65.6 | 84.3 | 80.4 | 5.9 | 8.4 |
EM-YOLOv5m | 640 | 88.7 | 69.7 | 83.4 | 84.7 | 14 | 24.2 |
EM-YOLOv5l | 640 | 89.3 | 71.7 | 84.2 | 85.7 | 29.6 | 52.1 |
[1] |
杨传栋, 钱立志, 薛松, 等. 图像自寻的弹药目标检测方法综述[J]. 兵工学报, 2022, 43(10): 2687-2704.
|
doi: 10.12382/bgxb.2021.0610 |
|
[2] |
龚诗雄, 王旭, 孔国杰, 等. 多车协同目标跟踪方法[J]. 兵工学报, 2022, 43(10): 2429-2442.
|
doi: 10.12382/bgxb.2021.0462 |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
doi: 10.1145/3065386 URL |
[7] |
|
[8] |
doi: 10.1109/TPAMI.2015.2389824 pmid: 26353135 |
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
王千, 王成, 冯振元, 等. K-means聚类算法研究综述[J]. 电子设计工程, 2012, 20(7): 21-24.
|
|
|
[22] |
伍育红. 聚类算法综述[J]. 计算机科学, 2015, 42(增刊6):491-499.
|
|
|
[23] |
张达为, 刘绪崇, 周维, 等. 基于改进YOLOv3的实时交通标志检测算法[J]. 计算机应用, 2022, 42(7): 2219-2226.
doi: 10.11772/j.issn.1001-9081.2021050731 |
doi: 10.11772/j.issn.1001-9081.2021050731 |
|
[24] |
蒋镕圻, 彭月平, 谢文宣, 等. 嵌入scSE模块的改进YOLOv4小目标检测算法[J]. 图学学报, 2021, 42(4): 546-555.
|
|
|
[25] |
|
[26] |
|
[27] |
|
[28] |
doi: 10.1007/s11263-014-0733-5 URL |
[29] |
|
[30] |
|
[31] |
doi: 10.1007/BF01890115 URL |
[32] |
|
[33] |
|
[34] |
|
[1] | SONG Xiaoru, LIU Kang, GAO Song, CHEN Chaobo, YAN Kun. Research on Improved YOLOv5-based Military Target Recognition Algorithm Used in Complex Battlefield Environment [J]. Acta Armamentarii, 2024, 45(3): 934-947. |
[2] | ZHOU Yu, CAO Ronggang, LI Ping, MA Xiao. A Fuze Burst Point Detection Method for Outfield Test Images [J]. Acta Armamentarii, 2023, 44(8): 2453-2464. |
[3] | WANG Xuemin, YU Hongbo, ZHANG Xiangyu, AN Shu, LI Wenhai. Underwater Multi-target Detection Method Based on Hough Transform Track-before-detect Technique [J]. Acta Armamentarii, 2023, 44(7): 2114-2121. |
[4] | LIU Song, YAO Zhixiang, LU Daiqiang, YUAN Jun. An Automatic Detection Algorithm Based on Wideband Spatial Spectrum of Passive Sonar [J]. Acta Armamentarii, 2023, 44(6): 1764-1774. |
[5] | FAN Boyang, ZHAO Gaopeng, BO Yuming, WU Xiang. Collaborative Task Allocation Method for Multi-Target Air-Ground Heterogeneous Unmanned System [J]. Acta Armamentarii, 2023, 44(6): 1564-1575. |
[6] | WANG Jian, ZHANG Bangning, ZHANG Jie, WEI Guofeng, GUO Daoxing. A Method for Specific Communication Emitter Identification Based on Multi-Domain Feature Fusion [J]. Acta Armamentarii, 2023, 44(4): 949-959. |
[7] | MA Pengge, WEI Hongguang, SUN Junling, TAO Ran, PANG Dongdong, SHAN Tao, CAI Zhiyong, LIU Zhaoyu. A LOG Filter Based Enhanced Local Contrast Algorithm to Detect Infrared Small Targets [J]. Acta Armamentarii, 2023, 44(4): 1041-1049. |
[8] | SUN Qiang, ZHANG Jiawei, YU Peng. Analysis of Electric Field Interference Characteristics and Signal Detection Method Based on Ocean Buoys [J]. Acta Armamentarii, 2023, 44(3): 857-864. |
[9] | WANG Qiang, WU Letian, LI Hong, WANG Yong, WANG Huan, YANG Wankou. An Infrared Small Target Detection Method via Dual Network Collaboration [J]. Acta Armamentarii, 2023, 44(10): 3165-3176. |
[10] | DING Bosheng, ZHANG Ruiheng, XU Lixin, CHEN Huiming. Sand-dust Image Restoration Using Gray Compensation and Feature Fusion [J]. Acta Armamentarii, 2023, 44(10): 3115-3126. |
[11] | WANG Zhong-mei, YANG Xiao-mei , GU Xing-fa. Small Target Detection in a Single Infrared Image Based on RPCA [J]. Acta Armamentarii, 2016, 37(9): 1753-1760. |
[12] | LI Zheng-zhou, HOU Qian, DAI Zhen, FU Hong-xia, GE Feng-zeng, JIN Gang. Dim Moving Target Detection Algorithm Based on Spatial-temporal Sparse Representation [J]. Acta Armamentarii, 2015, 36(7): 1273-1279. |
[13] | WU Yi-quan, SONG Yu. Background Suppression of Small Infrared Target Image Based on Nonsubsampled Complex Contourlet Transform and GaussianWavelet Support Vector Regression [J]. Acta Armamentarii, 2015, 36(4): 687-695. |
[14] | LIU Xiao, TANG Sheng-jing, ZHU Da-lin, GUO Jie. Research on Target Acquisition Probability in the Terminal Guidance of Guided Munition [J]. Acta Armamentarii, 2015, 36(2): 287-293. |
[15] | SONG Yi-gang, WU Ze-bin , SUN Le, LIU Jian-jun, WEI Zhi-hui. A Novel Spectral-spatial Sparse Method for Hyperspectral Target Detection [J]. Acta Armamentarii, 2014, 35(6): 834-841. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||