Acta Armamentarii ›› 2023, Vol. 44 ›› Issue (4): 1041-1049.doi: 10.12382/bgxb.2021.0767
Previous Articles Next Articles
MA Pengge1,*(), WEI Hongguang1, SUN Junling1, TAO Ran2, PANG Dongdong2, SHAN Tao2, CAI Zhiyong3, LIU Zhaoyu1
Received:
2021-11-12
Online:
2023-04-28
Contact:
MA Pengge
MA Pengge, WEI Hongguang, SUN Junling, TAO Ran, PANG Dongdong, SHAN Tao, CAI Zhiyong, LIU Zhaoyu. A LOG Filter Based Enhanced Local Contrast Algorithm to Detect Infrared Small Targets[J]. Acta Armamentarii, 2023, 44(4): 1041-1049.
Add to citation manager EndNote|Ris|BibTeX
组编号 | 帧数 | 图像分辨 率/像素 | 背景描述 | 目标 |
---|---|---|---|---|
Group 1 | 57 | 281×209 | 较弱云杂波多目标场景 | 无人机 |
Group 2 | 97 | 281×209 | 较强云杂波空天场景 | 无人机 |
Group 3 | 125 | 281×209 | 目标淹没在较强云杂波 空天场景 | 无人机 |
Group 4 | 86 | 281×209 | 背景复杂的低空场景 | 无人机 |
Group 5 | 67 | 281×209 | 较强杂波低空场景 | 无人机 |
Group 6 | 147 | 640×512 | 田地少建筑物低空场景 | 直升机 |
Group 7 | 86 | 640×512 | 多建筑物低空场景 | 直升机 |
Table 1 Infrared image datasets
组编号 | 帧数 | 图像分辨 率/像素 | 背景描述 | 目标 |
---|---|---|---|---|
Group 1 | 57 | 281×209 | 较弱云杂波多目标场景 | 无人机 |
Group 2 | 97 | 281×209 | 较强云杂波空天场景 | 无人机 |
Group 3 | 125 | 281×209 | 目标淹没在较强云杂波 空天场景 | 无人机 |
Group 4 | 86 | 281×209 | 背景复杂的低空场景 | 无人机 |
Group 5 | 67 | 281×209 | 较强杂波低空场景 | 无人机 |
Group 6 | 147 | 640×512 | 田地少建筑物低空场景 | 直升机 |
Group 7 | 86 | 640×512 | 多建筑物低空场景 | 直升机 |
算法 | Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 | Group 7 |
---|---|---|---|---|---|---|---|
Top-Hat算法[ | 90.82 | 97.94 | 89.61 | 77.78 | 59.65 | 82.99 | 83.72 |
Max-median算法[ | 94.89 | 96.53 | 73.63 | 91.86 | 84.21 | 76.87 | 73.25 |
RLCM算法[ | 87.76 | 96.91 | 89.92 | 90.81 | 87.72 | 92.52 | 91.86 |
IPI算法[ | 94.92 | 98.97 | 96.82 | 95.41 | 91.23 | 80.27 | 67.44 |
MPCM算法[ | 93.88 | 96.91 | 88.82 | 91.52 | 86.67 | 72.11 | 63.95 |
本文算法 | 96.47 | 100.00 | 93.19 | 98.63 | 95.87 | 95.59 | 98.92 |
Table 4 Average detection rates for datasets of seven real low-altitude complex scenarios%
算法 | Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 | Group 7 |
---|---|---|---|---|---|---|---|
Top-Hat算法[ | 90.82 | 97.94 | 89.61 | 77.78 | 59.65 | 82.99 | 83.72 |
Max-median算法[ | 94.89 | 96.53 | 73.63 | 91.86 | 84.21 | 76.87 | 73.25 |
RLCM算法[ | 87.76 | 96.91 | 89.92 | 90.81 | 87.72 | 92.52 | 91.86 |
IPI算法[ | 94.92 | 98.97 | 96.82 | 95.41 | 91.23 | 80.27 | 67.44 |
MPCM算法[ | 93.88 | 96.91 | 88.82 | 91.52 | 86.67 | 72.11 | 63.95 |
本文算法 | 96.47 | 100.00 | 93.19 | 98.63 | 95.87 | 95.59 | 98.92 |
算法 | Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 | Group 7 |
---|---|---|---|---|---|---|---|
Top-Hat算法[ | 14.29 | 4.12 | 12.82 | 22.22 | 24.56 | - | - |
Max-median算法[ | 12.24 | 5.16 | 41.61 | 10.47 | 28.07 | - | - |
RLCM算法[ | 16.32 | 3.09 | 12.42 | 10.35 | 15.79 | 21.09 | 18.61 |
IPI算法[ | 7.42 | 2.06 | 8.16 | 9.19 | 12.28 | - | - |
MPCM算法[ | 6.22 | 7.23 | 16.80 | 10.65 | 15.35 | - | - |
本文算法 | 5.24 | 1.58 | 8.43 | 4.86 | 7.39 | 10.69 | 6.68 |
Table 5 Average false alarm rates for datasets of seven real low-altitude complex scenarios%
算法 | Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 | Group 7 |
---|---|---|---|---|---|---|---|
Top-Hat算法[ | 14.29 | 4.12 | 12.82 | 22.22 | 24.56 | - | - |
Max-median算法[ | 12.24 | 5.16 | 41.61 | 10.47 | 28.07 | - | - |
RLCM算法[ | 16.32 | 3.09 | 12.42 | 10.35 | 15.79 | 21.09 | 18.61 |
IPI算法[ | 7.42 | 2.06 | 8.16 | 9.19 | 12.28 | - | - |
MPCM算法[ | 6.22 | 7.23 | 16.80 | 10.65 | 15.35 | - | - |
本文算法 | 5.24 | 1.58 | 8.43 | 4.86 | 7.39 | 10.69 | 6.68 |
算法 | Top-Hat算法[ | Max-median算法[ | RLCM算法[ | IPI算法[ | MPCM算法[ | 本文算法 |
---|---|---|---|---|---|---|
耗时/s | 0.451 | 0.885 | 3.394 | 5.037 | 0.062 | 0.403 |
Table 6 Average computational efficiency for single-frame infrared images using different algorithms (Group 1)
算法 | Top-Hat算法[ | Max-median算法[ | RLCM算法[ | IPI算法[ | MPCM算法[ | 本文算法 |
---|---|---|---|---|---|---|
耗时/s | 0.451 | 0.885 | 3.394 | 5.037 | 0.062 | 0.403 |
算法 | Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group6 | Group7 |
---|---|---|---|---|---|---|---|
Top-Hat算法[ | 11.512 | 23.196 | 24.824 | 14.657 | 18.732 | 23.856 | 27.443 |
Max-median算法[ | 1.943 | 16.355 | -11.169 | -14.356 | -10.8 | -10.758 | -13.615 |
RLCM算法[ | 4.79 | 15.974 | 27.798 | 25.622 | 20.993 | 33.275 | 34.825 |
IPI算法[ | 13.384 | 25.327 | 26.785 | 29.195 | 26.125 | 17.502 | 12.899 |
MPCM算法[ | 12.067 | 21.779 | 19.507 | -4.414 | -4.597 | 39.202 | 40.082 |
本文算法 | 16.576 | 28.572 | 36.358 | 35.767 | 32.811 | 47.938 | 47.759 |
Table 7 Average SNRG values for datasets of seven real low-altitude complex scenariosdB
算法 | Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group6 | Group7 |
---|---|---|---|---|---|---|---|
Top-Hat算法[ | 11.512 | 23.196 | 24.824 | 14.657 | 18.732 | 23.856 | 27.443 |
Max-median算法[ | 1.943 | 16.355 | -11.169 | -14.356 | -10.8 | -10.758 | -13.615 |
RLCM算法[ | 4.79 | 15.974 | 27.798 | 25.622 | 20.993 | 33.275 | 34.825 |
IPI算法[ | 13.384 | 25.327 | 26.785 | 29.195 | 26.125 | 17.502 | 12.899 |
MPCM算法[ | 12.067 | 21.779 | 19.507 | -4.414 | -4.597 | 39.202 | 40.082 |
本文算法 | 16.576 | 28.572 | 36.358 | 35.767 | 32.811 | 47.938 | 47.759 |
算法 | Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group6 | Group7 |
---|---|---|---|---|---|---|---|
Top-Hat算法[ | 6.054 | 19.506 | 14.709 | 4.17 | 7.948 | 10.158 | 18.225 |
Max-median算法[ | 3.428 | 11.883 | 6.714 | 1.630 | 3.202 | 4.959 | 6.961 |
RLCM算法[ | 2.613 | 8.266 | 18.225 | 15.077 | 10.182 | 25.734 | 32.311 |
IPI算法[ | 7.851 | 25.589 | 23.289 | 42.505 | 19.177 | 11.083 | 20.096 |
MPCM算法[ | 7.583 | 24.603 | 18.243 | 3.116 | 6.605 | 58.348 | 68.517 |
本文算法 | 12.545 | 41.988 | 48.898 | 48.205 | 40.852 | 136.145 | 142.425 |
Table 8 Average BSF values for datasets of seven real low-altitude complex scenariosdB
算法 | Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group6 | Group7 |
---|---|---|---|---|---|---|---|
Top-Hat算法[ | 6.054 | 19.506 | 14.709 | 4.17 | 7.948 | 10.158 | 18.225 |
Max-median算法[ | 3.428 | 11.883 | 6.714 | 1.630 | 3.202 | 4.959 | 6.961 |
RLCM算法[ | 2.613 | 8.266 | 18.225 | 15.077 | 10.182 | 25.734 | 32.311 |
IPI算法[ | 7.851 | 25.589 | 23.289 | 42.505 | 19.177 | 11.083 | 20.096 |
MPCM算法[ | 7.583 | 24.603 | 18.243 | 3.116 | 6.605 | 58.348 | 68.517 |
本文算法 | 12.545 | 41.988 | 48.898 | 48.205 | 40.852 | 136.145 | 142.425 |
[1] |
|
[2] |
doi: 10.1016/j.infrared.2015.03.007 URL |
[3] |
doi: 10.1016/j.patcog.2009.12.023 URL |
[4] |
|
[5] |
李红艳, 吴成柯. 一种基于小波变换的序列图像中小目标检测与跟踪算法[J]. 电子与信息学报, 2001, 23(10):943-948.
|
|
|
[6] |
doi: 10.1109/TIP.2013.2281420 URL |
[7] |
|
[8] |
|
[9] |
doi: 10.1109/LGRS.2018.2790909 URL |
[10] |
|
[11] |
|
[12] |
|
[13] |
doi: 10.1109/LGRS.8859 URL |
[14] |
doi: 10.1109/TGRS.36 URL |
[15] |
|
[16] |
doi: 10.1016/j.infrared.2016.05.007 URL |
[17] |
周苑, 张健民, 林晓. 基于加权LOG算子的红外弱小目标检测方法研究[J]. 应用光学, 2017, 38(1):114-119.
doi: 10.5768/JAO201738.0106003 |
|
|
[18] |
doi: 10.1016/j.measurement.2016.05.071 URL |
[19] |
段思韦, 王忠华, 叶铮. 空域加权局部对比度的红外小目标检测算法[J]. 激光与红外, 2020, 50(10):1200-1206.
|
|
|
[20] |
doi: 10.1109/JSTARS.4609443 URL |
[1] | HUI Kanghua, YANG Wei, LIU Haohan, ZHANG Zhi, ZHENG Jin, BAI Xiao. Enhanced Multi-scale Target Detection Method Based on YOLOv5 [J]. Acta Armamentarii, 2023, 44(9): 2600-2610. |
[2] | ZHOU Yu, CAO Ronggang, LI Ping, MA Xiao. A Fuze Burst Point Detection Method for Outfield Test Images [J]. Acta Armamentarii, 2023, 44(8): 2453-2464. |
[3] | WANG Xuemin, YU Hongbo, ZHANG Xiangyu, AN Shu, LI Wenhai. Underwater Multi-target Detection Method Based on Hough Transform Track-before-detect Technique [J]. Acta Armamentarii, 2023, 44(7): 2114-2121. |
[4] | LIU Song, YAO Zhixiang, LU Daiqiang, YUAN Jun. An Automatic Detection Algorithm Based on Wideband Spatial Spectrum of Passive Sonar [J]. Acta Armamentarii, 2023, 44(6): 1764-1774. |
[5] | SUN Qiang, ZHANG Jiawei, YU Peng. Analysis of Electric Field Interference Characteristics and Signal Detection Method Based on Ocean Buoys [J]. Acta Armamentarii, 2023, 44(3): 857-864. |
[6] | WANG Qiang, WU Letian, LI Hong, WANG Yong, WANG Huan, YANG Wankou. An Infrared Small Target Detection Method via Dual Network Collaboration [J]. Acta Armamentarii, 2023, 44(10): 3165-3176. |
[7] | WANG Zhong-mei, YANG Xiao-mei , GU Xing-fa. Small Target Detection in a Single Infrared Image Based on RPCA [J]. Acta Armamentarii, 2016, 37(9): 1753-1760. |
[8] | LI Zheng-zhou, HOU Qian, DAI Zhen, FU Hong-xia, GE Feng-zeng, JIN Gang. Dim Moving Target Detection Algorithm Based on Spatial-temporal Sparse Representation [J]. Acta Armamentarii, 2015, 36(7): 1273-1279. |
[9] | WU Yi-quan, SONG Yu. Background Suppression of Small Infrared Target Image Based on Nonsubsampled Complex Contourlet Transform and GaussianWavelet Support Vector Regression [J]. Acta Armamentarii, 2015, 36(4): 687-695. |
[10] | LIU Xiao, TANG Sheng-jing, ZHU Da-lin, GUO Jie. Research on Target Acquisition Probability in the Terminal Guidance of Guided Munition [J]. Acta Armamentarii, 2015, 36(2): 287-293. |
[11] | SONG Yi-gang, WU Ze-bin , SUN Le, LIU Jian-jun, WEI Zhi-hui. A Novel Spectral-spatial Sparse Method for Hyperspectral Target Detection [J]. Acta Armamentarii, 2014, 35(6): 834-841. |
[12] | ZHANG Yu, WANG Wen-sheng. Design of Cooled LWIR Refractive/diffractive Athermal Telephoto Objective [J]. Acta Armamentarii, 2014, 35(5): 648-653. |
[13] | QIN Han-lin, YAO Ke-ke, ZHOU Hui-xin, LIU Shang-qian, LAI Rui. Background Suppression for Dim and Small Target Based on Pyramidal Dual-tree Directional Filter Bank [J]. Acta Armamentarii, 2012, 33(9): 1036-1040. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||