Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (2): 407-416.doi: 10.12382/bgxb.2022.0649
Previous Articles Next Articles
MA Weining, HU Qiwei*(), CHEN Jing, JIA Xisheng
Received:
2022-07-18
Online:
2024-02-29
Contact:
HU Qiwei
CLC Number:
MA Weining, HU Qiwei, CHEN Jing, JIA Xisheng. Joint Optimization of Selective Maintenance Decision and Mission Assignment for Equipment Groups[J]. Acta Armamentarii, 2024, 45(2): 407-416.
Add to citation manager EndNote|Ris|BibTeX
序号 | αm | Nm,1 | Nm,2 | Km | Nm |
---|---|---|---|---|---|
1 | 1.4 | 2 | 1 | 2 | 3 |
2 | 1.0 | 1 | 2 | 2 | 3 |
Table 1 Submission parameters
序号 | αm | Nm,1 | Nm,2 | Km | Nm |
---|---|---|---|---|---|
1 | 1.4 | 2 | 1 | 2 | 3 |
2 | 1.0 | 1 | 2 | 2 | 3 |
序号 | 单元 类型 | 状态概率分布 | |||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||
1 | 1 | 0.13 | 0.23 | 0.30 | 0.34 |
2 | 1 | 0.10 | 0.12 | 0.46 | 0.32 |
3 | 1 | 0.12 | 0.05 | 0.26 | 0.57 |
4 | 2 | 0.10 | 0.27 | 0.27 | 0.36 |
5 | 2 | 0.32 | 0.50 | 0.13 | 0.05 |
6 | 2 | 0.16 | 0.30 | 0.26 | 0.28 |
Table 2 Parameters of each unit
序号 | 单元 类型 | 状态概率分布 | |||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||
1 | 1 | 0.13 | 0.23 | 0.30 | 0.34 |
2 | 1 | 0.10 | 0.12 | 0.46 | 0.32 |
3 | 1 | 0.12 | 0.05 | 0.26 | 0.57 |
4 | 2 | 0.10 | 0.27 | 0.27 | 0.36 |
5 | 2 | 0.32 | 0.50 | 0.13 | 0.05 |
6 | 2 | 0.16 | 0.30 | 0.26 | 0.28 |
算法 | 迭代次数 | 最优值 | 平均值 | 标准差 | 计算时间/s |
---|---|---|---|---|---|
枚举法 | 0.8872 | 1.2078 | |||
50 | 0.8872 | 0.8861 | 0.0016 | 0.1104 | |
遗传算法 | 100 | 0.8872 | 0.8865 | 0.0012 | 0.2170 |
150 | 0.8872 | 0.8871 | 0.0008 | 0.3301 | |
200 | 0.8872 | 0.8872 | 0.0000 | 0.4365 |
Table 3 Comparison of the calculated results of two algorithms
算法 | 迭代次数 | 最优值 | 平均值 | 标准差 | 计算时间/s |
---|---|---|---|---|---|
枚举法 | 0.8872 | 1.2078 | |||
50 | 0.8872 | 0.8861 | 0.0016 | 0.1104 | |
遗传算法 | 100 | 0.8872 | 0.8865 | 0.0012 | 0.2170 |
150 | 0.8872 | 0.8871 | 0.0008 | 0.3301 | |
200 | 0.8872 | 0.8872 | 0.0000 | 0.4365 |
R | R1 | R2 |
---|---|---|
0.8872 | 0.9407 | 0.9431 |
Table 4 The completion probability of each submission corresponding to the optimal solution
R | R1 | R2 |
---|---|---|
0.8872 | 0.9407 | 0.9431 |
C | C1 | C2 |
---|---|---|
18 | 10 | 8 |
Table 5 The maintenance cost allocated to each submission corresponding to the optimal solution
C | C1 | C2 |
---|---|---|
18 | 10 | 8 |
序号 | 联合优化 | 两阶段优化 | ||
---|---|---|---|---|
维修策略 | 分配策略 | 维修策略 | 分配策略 | |
1 | 2 | 2 | 2 | 1 |
2 | 2 | 1 | 2 | 2 |
3 | 2 | 1 | 4 | 1 |
4 | 2 | 2 | 2 | 1 |
5 | 4 | 1 | 3 | 2 |
6 | 3 | 2 | 4 | 2 |
参数 | 联合优化 | 两阶段优化 | ||
R1 | 0.9407 | 0.9375 | ||
R2 | 0.9431 | 0.9360 | ||
R | 0.8872 | 0.8775 |
Table 6 Optimal selective maintenance strategy and mission assignment strategy for joint optimization and two-stage optimization
序号 | 联合优化 | 两阶段优化 | ||
---|---|---|---|---|
维修策略 | 分配策略 | 维修策略 | 分配策略 | |
1 | 2 | 2 | 2 | 1 |
2 | 2 | 1 | 2 | 2 |
3 | 2 | 1 | 4 | 1 |
4 | 2 | 2 | 2 | 1 |
5 | 4 | 1 | 3 | 2 |
6 | 3 | 2 | 4 | 2 |
参数 | 联合优化 | 两阶段优化 | ||
R1 | 0.9407 | 0.9375 | ||
R2 | 0.9431 | 0.9360 | ||
R | 0.8872 | 0.8775 |
序号 | 模型Ⅰ | 模型Ⅱ | 模型Ⅲ | 模型Ⅳ | ||
---|---|---|---|---|---|---|
维修 策略 | 分配 策略 | 维修 策略 | 分配 策略 | 维修 策略 | 维修 策略 | |
1 | 2 | 2 | 4 | 1 | 4 | 4 |
2 | 2 | 1 | 1 | 1 | 2 | 1 |
3 | 2 | 1 | 1 | 2 | 1 | 1 |
4 | 2 | 2 | 1 | 2 | 2 | 4 |
5 | 4 | 1 | 4 | 2 | 4 | 4 |
6 | 3 | 2 | 4 | 1 | 2 | 1 |
参数 | 模型Ⅰ | 模型Ⅱ | 模型Ⅲ | 模型Ⅳ | ||
R1 | 0.9407 | 0.9454 | 0.9331 | 0.9545 | ||
R2 | 0.9431 | 0.9247 | 0.9415 | 0.9091 | ||
R | 0.8872 | 0.8743 | 0.8785 | 0.8595 |
Table 7 Optimal selective maintenance strategy and mission assignment strategy
序号 | 模型Ⅰ | 模型Ⅱ | 模型Ⅲ | 模型Ⅳ | ||
---|---|---|---|---|---|---|
维修 策略 | 分配 策略 | 维修 策略 | 分配 策略 | 维修 策略 | 维修 策略 | |
1 | 2 | 2 | 4 | 1 | 4 | 4 |
2 | 2 | 1 | 1 | 1 | 2 | 1 |
3 | 2 | 1 | 1 | 2 | 1 | 1 |
4 | 2 | 2 | 1 | 2 | 2 | 4 |
5 | 4 | 1 | 4 | 2 | 4 | 4 |
6 | 3 | 2 | 4 | 1 | 2 | 1 |
参数 | 模型Ⅰ | 模型Ⅱ | 模型Ⅲ | 模型Ⅳ | ||
R1 | 0.9407 | 0.9454 | 0.9331 | 0.9545 | ||
R2 | 0.9431 | 0.9247 | 0.9415 | 0.9091 | ||
R | 0.8872 | 0.8743 | 0.8785 | 0.8595 |
序号 | α2=1.0 | α2=1.2 | α2=1.4 | |||
---|---|---|---|---|---|---|
维修 策略 | 分配 策略 | 维修 策略 | 分配 策略 | 维修 策略 | 分配 策略 | |
1 | 2 | 2 | 2 | 1 | 2 | 2 |
2 | 2 | 1 | 2 | 2 | 2 | 1 |
3 | 2 | 1 | 2 | 1 | 1 | 1 |
4 | 2 | 2 | 2 | 2 | 2 | 2 |
5 | 4 | 1 | 4 | 1 | 4 | 1 |
6 | 3 | 2 | 3 | 2 | 4 | 2 |
参数 | α2=1.0 | α2=1.2 | α2=1.4 | |||
C1 | 10 | 10 | 8 | |||
C2 | 8 | 8 | 10 | |||
R1 | 0.9407 | 0.9357 | 0.9208 | |||
R2 | 0.9431 | 0.9308 | 0.9275 | |||
R | 0.8872 | 0.8709 | 0.8540 |
Table 8 Optimal selective maintenance strategy and mission assignment strategy under different environmental coefficients (α1≥α2)
序号 | α2=1.0 | α2=1.2 | α2=1.4 | |||
---|---|---|---|---|---|---|
维修 策略 | 分配 策略 | 维修 策略 | 分配 策略 | 维修 策略 | 分配 策略 | |
1 | 2 | 2 | 2 | 1 | 2 | 2 |
2 | 2 | 1 | 2 | 2 | 2 | 1 |
3 | 2 | 1 | 2 | 1 | 1 | 1 |
4 | 2 | 2 | 2 | 2 | 2 | 2 |
5 | 4 | 1 | 4 | 1 | 4 | 1 |
6 | 3 | 2 | 3 | 2 | 4 | 2 |
参数 | α2=1.0 | α2=1.2 | α2=1.4 | |||
C1 | 10 | 10 | 8 | |||
C2 | 8 | 8 | 10 | |||
R1 | 0.9407 | 0.9357 | 0.9208 | |||
R2 | 0.9431 | 0.9308 | 0.9275 | |||
R | 0.8872 | 0.8709 | 0.8540 |
序号 | α2=1.4 | α2=1.6 | α2=1.8 | |||
---|---|---|---|---|---|---|
维修 策略 | 分配 策略 | 维修 策略 | 分配 策略 | 维修 策略 | 分配 策略 | |
1 | 2 | 2 | 2 | 1 | 2 | 1 |
2 | 2 | 1 | 2 | 1 | 2 | 1 |
3 | 1 | 1 | 2 | 2 | 1 | 2 |
4 | 2 | 2 | 2 | 2 | 2 | 1 |
5 | 4 | 1 | 4 | 2 | 4 | 2 |
6 | 4 | 2 | 3 | 1 | 4 | 2 |
参数 | α2=1.4 | α2=1.6 | α2=1.8 | |||
C1 | 8 | 8 | 6 | |||
C2 | 10 | 10 | 12 | |||
R1 | 0.9208 | 0.9089 | 0.8939 | |||
R2 | 0.9275 | 0.9213 | 0.9216 | |||
R | 0.8540 | 0.8378 | 0.8238 |
Table 9 Optimal selective maintenance strategy and mission assignment strategy under different environmental coefficients (α1≤α2)
序号 | α2=1.4 | α2=1.6 | α2=1.8 | |||
---|---|---|---|---|---|---|
维修 策略 | 分配 策略 | 维修 策略 | 分配 策略 | 维修 策略 | 分配 策略 | |
1 | 2 | 2 | 2 | 1 | 2 | 1 |
2 | 2 | 1 | 2 | 1 | 2 | 1 |
3 | 1 | 1 | 2 | 2 | 1 | 2 |
4 | 2 | 2 | 2 | 2 | 2 | 1 |
5 | 4 | 1 | 4 | 2 | 4 | 2 |
6 | 4 | 2 | 3 | 1 | 4 | 2 |
参数 | α2=1.4 | α2=1.6 | α2=1.8 | |||
C1 | 8 | 8 | 6 | |||
C2 | 10 | 10 | 12 | |||
R1 | 0.9208 | 0.9089 | 0.8939 | |||
R2 | 0.9275 | 0.9213 | 0.9216 | |||
R | 0.8540 | 0.8378 | 0.8238 |
[1] |
|
[2] |
doi: 10.1016/j.ress.2019.106738 URL |
[3] |
doi: 10.1016/j.dt.2016.04.004 URL |
[4] |
doi: 10.1016/j.ress.2017.05.004 URL |
[5] |
王海朋, 段富海, 马骏. 复杂系统的选择性维修模型和求解算法[J]. 北京航空航天大学学报, 2020, 46(12): 2264-2273.
|
|
|
[6] |
doi: 10.1109/TR.2010.2046798 URL |
[7] |
王少华, 张仕新, 李勇, 等. 不完全维修条件下复杂系统的选择性维修决策方法研究[J]. 兵工学报, 2018, 39(6): 1215-1224.
doi: 10.3969/j.issn.1000-1093.2018.06.023 |
|
|
[8] |
doi: 10.1016/j.procs.2022.01.342 URL |
[9] |
|
[10] |
doi: 10.1016/j.ress.2016.11.006 URL |
[11] |
doi: 10.1080/00207543.2018.1505060 URL |
[12] |
doi: 10.21307/ijor-2015-009 URL |
[13] |
|
[14] |
doi: 10.1016/j.ress.2020.106895 URL |
[15] |
doi: 10.1080/00207543.2018.1505060 URL |
[16] |
doi: 10.1016/j.ress.2021.108209 URL |
[17] |
doi: 10.2991/ijcis.d.210423.003 URL |
[18] |
王幸运, 田野, 强晓明, 等. 基于协同效能的反导作战任务分配模型[J]. 空军工程大学学报, 2013, 14(4): 27-31.
|
|
|
[19] |
doi: 10.1016/j.cja.2019.05.012 URL |
[20] |
王慕鸿, 周智超, 张蓉, 等. 两栖攻击舰对空自防御作战火力分配模型[J]. 火力与指挥控制, 2020, 45(12): 127-131.
|
|
|
[21] |
doi: 10.1016/j.ast.2018.01.025 URL |
[22] |
doi: 10.1016/j.ress.2021.107811 URL |
[23] |
刘宇. 多状态复杂系统可靠性建模及维修决策[D]. 成都: 电子科技大学, 2010.
|
|
[1] | QIN Guohua, LOU Weida, LIN Feng, XU Yong. A Novel Method of Stability Judgment and Milling Parameter Optimization Based on Cotes Integration Method and Neural Network [J]. Acta Armamentarii, 2024, 45(2): 516-526. |
[2] | LIU Zichang, LI Siyu, PEI Mochao, LIU Jie, MENG Shuo, WU Weiyi. Fault Diagnosis Method for Diesel Engine Based on Texture Analysis [J]. Acta Armamentarii, 2024, 45(2): 684-694. |
[3] | YE Wenyu, WANG Chunyang, YU Jinyang, TUO Mingkan, WANG Zishuo. Multi-beam Scanning of Liquid Crystal Optical Phased Array Based on Greedy Algorithm [J]. Acta Armamentarii, 2023, 44(9): 2650-2660. |
[4] | CHEN Song, ZHU Dongsheng, ZUO Qinwen, HAN Chaoshuai. GA-PS Based Three-dimensional Space Source Inversion Algorithm [J]. Acta Armamentarii, 2023, 44(8): 2503-2520. |
[5] | ZHANG An, XU Shuangfei, BI Wenhao, XU Han. Weapon-target Assignment and Guidance Sequence Optimization in Air-to-Ground Multi-target Attack [J]. Acta Armamentarii, 2023, 44(8): 2233-2244. |
[6] | LIU Yan, WANG Baichuan, YAN Junbo, YAN Zichen, SHI Zhenqing, HUANG Fenglei. Dynamic Response of Honeycomb Sandwich Plate with Negative Poisson’s Ratio under Penetration [J]. Acta Armamentarii, 2023, 44(7): 1938-1953. |
[7] | DU Weiwei, CHEN Xiaowei. Task Assignment and Optimization Method of Tactical-Level Army Operations [J]. Acta Armamentarii, 2023, 44(5): 1431-1442. |
[8] | CHEN Liang, LIU Rong-zhong, GUO Rui, ZHAO Bo-bo, LIU Lei, YANG Yong-liang. Multi-objective Optimization on Aerodynamic Shape of Projectile with Twisted Empennages [J]. Acta Armamentarii, 2016, 37(7): 1187-1193. |
[9] | WANG Qin-long, WANG Hong-yan, RUI Qiang. Research on Parameter Updating of High Mobility Tracked Vehicle Dynamic Model Based on Multi-objectiveGenetic Algorithm [J]. Acta Armamentarii, 2016, 37(6): 969-978. |
[10] | JIN Bi-xuan, ZHAI Yong, GU Hong-tao, ZHANG Tao. Optimized Methodfor Shift Valve Used in Integrated Transmission [J]. Acta Armamentarii, 2016, 37(4): 591-597. |
[11] | ZHAO Jian-zhong, OUYANG Zhong-hui, ZHANG Lei,ZHAO Jian-yin. Combined Prediction on Avionics State Optimized by MAGA [J]. Acta Armamentarii, 2016, 37(4): 727-734. |
[12] | WANG Li-qun, YANG Guo-lai, LIU Jun-min, GE Jian-li. Robust Design of Random Factors on Gun Firing Dispersion [J]. Acta Armamentarii, 2016, 37(11): 1983-1988. |
[13] | WANG Ran-hui, WANG Chao. Variable Value Control Technology of Genetic Algorithm for WTA of Ground Target Attacking [J]. Acta Armamentarii, 2016, 37(10): 1889-1895. |
[14] | DONG Chao-yang, LU Yao, WANG Qing. Improved Genetic Algorithm for Solving Firepower Distribution [J]. Acta Armamentarii, 2016, 37(1): 97-102. |
[15] | LI Liang, LI Feng, FENG Yong-bao, YAO Xiao-guang. Research on Control Strategy of Large Hydraulic Erecting System Based on Adaptive Fuzzy Sliding Mode [J]. Acta Armamentarii, 2016, 37(1): 71-76. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||