Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (1): 339-348.doi: 10.12382/bgxb.2022.0547
Previous Articles Next Articles
LIU Haobang1, SHI Xianming1,*(), ZHAO Mei1, ZHANG Jianjun2
Received:
2022-06-19
Online:
2024-01-30
Contact:
SHI Xianming
CLC Number:
LIU Haobang, SHI Xianming, ZHAO Mei, ZHANG Jianjun. Bayesian Estimation of Surface-to-Air Missile Hit Probability Based on Normal-inverse Wishart Distribution[J]. Acta Armamentarii, 2024, 45(1): 339-348.
Add to citation manager EndNote|Ris|BibTeX
uxw | uyw | ρw | ||
---|---|---|---|---|
2.6403 | 2.4799 | 7.5723 | 5.9074 | 0.132 |
0.7555 | -0.139 | 6.6879 | 6.5947 | 0.347 |
1.6672 | 1.1085 | 6.3770 | 5.2931 | 0.293 |
2.0232 | 2.1851 | 7.5895 | 6.7872 | 0.281 |
2.8013 | 0.4143 | 7.6679 | 5.3524 | 0.306 |
0.3645 | -1.961 | 7.1918 | 4.4118 | 0.211 |
0.6867 | 0.1977 | 8.2224 | 6.5851 | 0.471 |
-0.4182 | 0.3964 | 6.4517 | 5.6393 | 0.193 |
-1.6221 | -0.1843 | 7.3581 | 4.4016 | 0.207 |
2.5087 | -0.0998 | 7.2903 | 5.5550 | 0.255 |
0.3648 | 1.0525 | 9.1168 | 6.8629 | 0.129 |
2.9984 | 1.5372 | 8.2664 | 6.5618 | 0.345 |
3.9850 | 2.6212 | 7.1418 | 5.3819 | 0.219 |
2.6754 | 1.8164 | 7.3274 | 4.6665 | 0.167 |
2.3072 | 2.4857 | 7.2153 | 5.3975 | 0.286 |
2.0955 | 1.364 | 6.7565 | 6.2557 | 0.108 |
-0.2608 | -1.3818 | 6.5446 | 7.1421 | 0.223 |
1.0069 | -0.621 | 7.2879 | 6.4085 | 0.267 |
0.5769 | 0.1977 | 5.6595 | 6.2875 | 0.163 |
-0.1456 | 0.4277 | 6.3870 | 5.4659 | 0.275 |
0.6136 | 1.9062 | 9.1106 | 6.2640 | 0.233 |
-1.1208 | -0.3237 | 6.7686 | 5.3795 | 0.195 |
1.0378 | 0.4674 | 6.8930 | 3.8074 | 0.301 |
0.9787 | 1.5857 | 5.4529 | 4.3073 | 0.179 |
0.0439 | 0.3098 | 7.6678 | 5.2978 | 0.197 |
Table 1 Projectile dispersion parameter data of prior information m
uxw | uyw | ρw | ||
---|---|---|---|---|
2.6403 | 2.4799 | 7.5723 | 5.9074 | 0.132 |
0.7555 | -0.139 | 6.6879 | 6.5947 | 0.347 |
1.6672 | 1.1085 | 6.3770 | 5.2931 | 0.293 |
2.0232 | 2.1851 | 7.5895 | 6.7872 | 0.281 |
2.8013 | 0.4143 | 7.6679 | 5.3524 | 0.306 |
0.3645 | -1.961 | 7.1918 | 4.4118 | 0.211 |
0.6867 | 0.1977 | 8.2224 | 6.5851 | 0.471 |
-0.4182 | 0.3964 | 6.4517 | 5.6393 | 0.193 |
-1.6221 | -0.1843 | 7.3581 | 4.4016 | 0.207 |
2.5087 | -0.0998 | 7.2903 | 5.5550 | 0.255 |
0.3648 | 1.0525 | 9.1168 | 6.8629 | 0.129 |
2.9984 | 1.5372 | 8.2664 | 6.5618 | 0.345 |
3.9850 | 2.6212 | 7.1418 | 5.3819 | 0.219 |
2.6754 | 1.8164 | 7.3274 | 4.6665 | 0.167 |
2.3072 | 2.4857 | 7.2153 | 5.3975 | 0.286 |
2.0955 | 1.364 | 6.7565 | 6.2557 | 0.108 |
-0.2608 | -1.3818 | 6.5446 | 7.1421 | 0.223 |
1.0069 | -0.621 | 7.2879 | 6.4085 | 0.267 |
0.5769 | 0.1977 | 5.6595 | 6.2875 | 0.163 |
-0.1456 | 0.4277 | 6.3870 | 5.4659 | 0.275 |
0.6136 | 1.9062 | 9.1106 | 6.2640 | 0.233 |
-1.1208 | -0.3237 | 6.7686 | 5.3795 | 0.195 |
1.0378 | 0.4674 | 6.8930 | 3.8074 | 0.301 |
0.9787 | 1.5857 | 5.4529 | 4.3073 | 0.179 |
0.0439 | 0.3098 | 7.6678 | 5.2978 | 0.197 |
统计量 | μ | Σ |
---|---|---|
均值 | [1.1426 0.7137]T | |
协方差 |
Table 2 Projectile dispersion parameter statistics of prior informationm
统计量 | μ | Σ |
---|---|---|
均值 | [1.1426 0.7137]T | |
协方差 |
Σ | μ | ||
---|---|---|---|
Inv-Wishart(ν0,Ψ0) | $\mathrm{N}\left(\boldsymbol{\mu}_{0}, \frac{\boldsymbol{\Sigma}}{k_{0}}\right)$ | ||
ν0 | Ψ0 | μ0 | k0 |
5.3 | [1.1426 0.7137]T | 3.05 |
Table 3 Prior distribution hyperparameters of projectile dispersion parameters
Σ | μ | ||
---|---|---|---|
Inv-Wishart(ν0,Ψ0) | $\mathrm{N}\left(\boldsymbol{\mu}_{0}, \frac{\boldsymbol{\Sigma}}{k_{0}}\right)$ | ||
ν0 | Ψ0 | μ0 | k0 |
5.3 | [1.1426 0.7137]T | 3.05 |
Σ | μ | ||||
---|---|---|---|---|---|
Inv-Wishart(νn,Ψn) | N(μn, ) | ||||
νn | Ψn | $\hat{\boldsymbol{\Sigma}}_{\mathrm{E}}$ | μn | kn | $\hat{\boldsymbol{\mu}}_{\mathrm{E}}$ |
15.3 | [1.166, 0.802]T | 13.05 | [1.166, 0.802]T |
Table 4 Posterior distribution of projectile dispersion parameters(10 missiles )
Σ | μ | ||||
---|---|---|---|---|---|
Inv-Wishart(νn,Ψn) | N(μn, ) | ||||
νn | Ψn | $\hat{\boldsymbol{\Sigma}}_{\mathrm{E}}$ | μn | kn | $\hat{\boldsymbol{\mu}}_{\mathrm{E}}$ |
15.3 | [1.166, 0.802]T | 13.05 | [1.166, 0.802]T |
计算目标 | 正态-逆威沙特分布方法 (本文方法) | 正态-逆伽马分布方法 (现有研究方法) | 外场射击试验样本 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
$\hat{\boldsymbol{\mu}}_{\mathrm{E}}$ | $\hat{\boldsymbol{\Sigma}}_{\mathrm{E}}$ | $\hat{u}_{x \mathrm{E}}$ | $\hat{\sigma}_{x \mathrm{E}}$ | $\hat{u}_{y \mathrm{E}}$ | $\hat{\sigma}_{y E}$ | ux | σx | uy | σy | ρ | |
射弹散布 参数 | [1.166, 0.802]T | 1.158 | 2.513 | 0.809 | 1.966 | 1.173 | 2.397 | 0.829 | 1.468 | 0.383 | |
命中概率 | 0.81 | 0.72 | 0.84 |
Table 5 Comparison of hit probability calculations of two methods
计算目标 | 正态-逆威沙特分布方法 (本文方法) | 正态-逆伽马分布方法 (现有研究方法) | 外场射击试验样本 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
$\hat{\boldsymbol{\mu}}_{\mathrm{E}}$ | $\hat{\boldsymbol{\Sigma}}_{\mathrm{E}}$ | $\hat{u}_{x \mathrm{E}}$ | $\hat{\sigma}_{x \mathrm{E}}$ | $\hat{u}_{y \mathrm{E}}$ | $\hat{\sigma}_{y E}$ | ux | σx | uy | σy | ρ | |
射弹散布 参数 | [1.166, 0.802]T | 1.158 | 2.513 | 0.809 | 1.966 | 1.173 | 2.397 | 0.829 | 1.468 | 0.383 | |
命中概率 | 0.81 | 0.72 | 0.84 |
[1] |
|
[2] |
闫志强. 装备试验评估中的变动统计方法研究[D]. 长沙: 国防科学技术大学, 2010.
|
|
|
[3] |
|
[4] |
王保华, 裴益轩, 霍勇谋, 等. 一种求解火箭防空武器毁歼概率的简便方法[J]. 兵工学报, 2016, 37(4):751-755.
doi: 10.3969/j.issn.1000-1093.2016.04.025 |
|
|
[5] |
王树山, 买瑞敏. 集束箭弹命中概率分析的Monte-Carlo方法[J]. 北京理工大学学报, 2005, 25(4):286-288.
|
|
|
[6] |
|
[7] |
李宗吉, 程善政, 刘洋. 蒙特卡洛模拟法计算航空自导深弹命中概率[J]. 弹箭与制导学报, 2012, 32(2):22-24.
|
|
|
[8] |
于涛, 郝永平, 郑斌, 等. 上升扫描式末敏子弹对坦克目标的毁伤效能评估[J]. 兵工学报, 2018, 39(10):1927-1935.
doi: 10.3969/j.issn.1000-1093.2018.10.007 |
|
|
[9] |
|
[10] |
doi: 10.5762/KAIS.2016.17.5.56 URL |
[11] |
闫志强, 蒋英杰, 谢红卫. 基于顺序约束的命中概率多批次试验统计评定方法[J]. 宇航学报, 2010, 31(4):1206-1211.
|
|
|
[12] |
李康, 史宪铭, 李广宁, 等. 基于正态-逆伽马分布的反巡航导弹命中概率估计方法[J]. 系统工程与电子技术, 2022, 44(8):2621-2627.
doi: 10.12305/j.issn.1001-506X.2022.08.27 |
|
|
[13] |
|
[14] |
吴越, 刘东升, 孙树国, 等. 岩土强度参数正态-逆伽马分布的最大后验估计[J]. 岩石力学与工程学报, 2019, 38(6):1188-1196.
|
|
|
[15] |
赵永满. 基于威沙特分布的二元过程均值与协方差监控[J]. 统计与决策, 2015(5):71-72.
|
|
|
[16] |
许凯, 何道江, 徐兴忠. 正态-逆Wishart先验下多元线性模型中经验Bayes估计的优良性[J]. 数学年刊A辑(中文版), 2014, 35(3):267-284.
|
|
|
[17] |
王润平, 王正向. 地空导弹单发杀伤概率之解析算法[J]. 系统工程与电子技术, 2001, 23(5):39-40.
|
|
|
[18] |
沈忱, 徐定杰, 沈锋, 等. 基于变分推断的一般噪声自适应卡尔曼滤波[J]. 系统工程与电子技术, 2014, 36(8):1466-1472.
|
|
|
[19] |
许述文, 王喆祥, 水鹏朗. 海杂波背景下雷达目标贝叶斯检测算法[J]. 西安电子科技大学学报, 2021, 48(2):15-26.
|
|
|
[20] |
|
[21] |
朱光明, 蒋荣欣, 周凡, 等. 带测量偏置估计的鲁棒卡尔曼滤波算法[J]. 浙江大学学报(工学版), 2015, 49(7):1343-1349.
|
|
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[1] | SHI Haijie, LI Jinghua, LIU Lili, CHANG Hong. Passive Localization Method for Acoustic Sources in Shallow Water Based on Bayesian Estimation [J]. Acta Armamentarii, 2023, 44(5): 1394-1402. |
[2] | LIU Haobang, SHI Xianming, HAO Bing, JIANG Yongchao. Estimation of Ammunition Hit Probability in Multiple-Batch Tests Using Multinomial Distribution [J]. Acta Armamentarii, 2023, 44(10): 3156-3164. |
[3] | SONG Jiarui, TAO Gang, LI Derun, ZANG Zheng, WU Shaobin, GONG Jianwei. Robust Model Predictive Control for Manned and Unmanned Vehicle Formation Based on Parameter Self-Optimization [J]. Acta Armamentarii, 2023, 44(1): 84-97. |
[4] | YANG Jianxin, LAN Xiaoping, FENG Yadong, YANG Yiming, GUO Zhiming. An Ammunition Quality Evaluation Method Based on Least Squares Support Vector Machine [J]. Acta Armamentarii, 2022, 43(5): 1012-1022. |
[5] | DENG Liyuan, YANG Ping, LIU Weidong, WANG Jiangpeng. Application in Damage Effect Evaluation of Early Warning Radar of Cloudy Bayesian Network Based on Dempster Shafer/AnalyticHierarchy Process Method [J]. Acta Armamentarii, 2022, 43(4): 814-825. |
[6] | XU Xiaodong, TANG Shengjin, XIE Jian, YU Chuanqiang, WANG Fengfei, HAN Yangyang. Remaining Useful Life Prediction of Equipment under Random Degradation Stress [J]. Acta Armamentarii, 2022, 43(3): 712-719. |
[7] | LI Jisan, HOU Jiao, LIU Rong, REN Yuan. Optimal Time Resource Allocation Algorithm for Surveillance Phased Array Radar Target Tracking Based on Bayesian FilteringAlgorithm [J]. Acta Armamentarii, 2021, 42(9): 1902-1910. |
[8] | MA Yunfei, BAI Huajun, WEN Liang, GUO Chiming, JIA Xisheng. Bayesian Compression and Reconstruction for Rotating Mechanical Vibration Signal Based on Laplace Prior and Sparse BlockCorrelation [J]. Acta Armamentarii, 2021, 42(12): 2762-2770. |
[9] | ZHAO Xin, JI Yongxiang, LIU Shefeng, CHEN Zhong, NING Xiaolei. Data Processing of Test of Fuze Arming Distance Measured Using Langlie Method Based on Bayesian Method [J]. Acta Armamentarii, 2021, 42(1): 26-32. |
[10] | WANG Haipeng, DUAN Fuhai. Bayesian Network Method for Reliability Analysis of Complex Uncertainty Systems [J]. Acta Armamentarii, 2020, 41(1): 171-182. |
[11] | SHI Xianjun, WANG Kang, HAN Xu, LONG Yufeng. Method for Determining Fault Sample Size Based on Hierarchical Bayesian Network and Posterior Risk Criteria [J]. Acta Armamentarii, 2019, 40(1): 171-181. |
[12] | LI Hai-yang, XIE Li-yang, LI Ming, LI Qiang, ZHONG Hai. Research on a New Reliability Assessment Method for Zero-failure Data [J]. Acta Armamentarii, 2018, 39(8): 1622-1631. |
[13] | XU Ting-xue, LI Zhi-qiang, GU Jun-yuan, CONG Lin-hu, AN Jin, ZHAO Jian-zhong. Missile Condition Assessment Based on Multi-state Bayesian Network [J]. Acta Armamentarii, 2018, 39(2): 391-398. |
[14] | LI Zhi-qiang, XU Ting-xue, GU Jun-yuan, AN Jin, DONG Qi. Availability Modeling and Analyzing of Multi-state Control Unit under Condition-based Maintenance [J]. Acta Armamentarii, 2017, 38(11): 2240-2250. |
[15] | WANG Bao-hua, PEI Yi-xuan, HUO Yong-mou, XUN Pan-pan. A Convenient Solution Method for Kill Probability of Antiaircraft Rocket Weapon [J]. Acta Armamentarii, 2016, 37(4): 751-755. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||