Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (7): 2110-2127.doi: 10.12382/bgxb.2023.0132
Previous Articles Next Articles
TIAN Hongqing1, MA Mingtao1, ZHANG Bo1, ZHENG Xunjia2,*()
Received:
2023-02-24
Online:
2023-11-18
Contact:
ZHENG Xunjia
CLC Number:
TIAN Hongqing, MA Mingtao, ZHANG Bo, ZHENG Xunjia. Potential Field Exploring Tree Path Planning for Intelligent Vehicle in Off-road Environment[J]. Acta Armamentarii, 2024, 45(7): 2110-2127.
Add to citation manager EndNote|Ris|BibTeX
车辆参数 | 数值 |
---|---|
外形尺寸(长×宽×高)/mm | 4955×2137×1920 |
轴距/mm | 3300 |
整车质量/kg | 3200 |
行驶车速/(km·h-1) | 30 |
Table 1 Path planning simulation parameters
车辆参数 | 数值 |
---|---|
外形尺寸(长×宽×高)/mm | 4955×2137×1920 |
轴距/mm | 3300 |
整车质量/kg | 3200 |
行驶车速/(km·h-1) | 30 |
算法 | 距离/m | 势场值 | 最近障碍距离/m | 通行代价 |
---|---|---|---|---|
FMT* | 1999 | 161 | 2.17 | 2160 |
Q-RRT* | 1876 | 265 | 1.62 | 2141 |
A-PRM | 2102 | 60 | 12.22 | 2162 |
A* | 1946 | 415 | 5.0 | 2361 |
PFT* | 2018 | 33 | 22.80 | 2051 |
Table 2 Comparisonof simulated results (Scenario 1)
算法 | 距离/m | 势场值 | 最近障碍距离/m | 通行代价 |
---|---|---|---|---|
FMT* | 1999 | 161 | 2.17 | 2160 |
Q-RRT* | 1876 | 265 | 1.62 | 2141 |
A-PRM | 2102 | 60 | 12.22 | 2162 |
A* | 1946 | 415 | 5.0 | 2361 |
PFT* | 2018 | 33 | 22.80 | 2051 |
算法 | 距离/m | 势场值 | 越野距离/m | 通行代价 |
---|---|---|---|---|
FMT* | 702 | 503 | 560 | 1 205 |
Q-RRT* | 683 | 498 | 565 | 1 181 |
A-PRM | 1 160 | 98 | 60 | 1 258 |
A* | 1 457 | 267 | 0 | 1 724 |
PFT* | 908 | 240 | 308 | 1 148 |
Table 3 Comparison of simulated results (Scenario 2)
算法 | 距离/m | 势场值 | 越野距离/m | 通行代价 |
---|---|---|---|---|
FMT* | 702 | 503 | 560 | 1 205 |
Q-RRT* | 683 | 498 | 565 | 1 181 |
A-PRM | 1 160 | 98 | 60 | 1 258 |
A* | 1 457 | 267 | 0 | 1 724 |
PFT* | 908 | 240 | 308 | 1 148 |
算法 | 距离/m | 势场值 | 最近障碍 距离/m | 越野距 离/m | 通行 代价 |
---|---|---|---|---|---|
FMT* | 1417 | 971 | 2.95 | 235 | 2389 |
Q-RRT* | 1341 | 676 | 1.82 | 200 | 2017 |
A-PRM | 1628 | 318 | 17.04 | 70 | 1946 |
A* | 1616 | 326 | 13.41 | 0 | 1942 |
PFT* | 1629 | 109 | 23.30 | 42 | 1738 |
Table 4 Comparison of simulated results (Scenario 3)
算法 | 距离/m | 势场值 | 最近障碍 距离/m | 越野距 离/m | 通行 代价 |
---|---|---|---|---|---|
FMT* | 1417 | 971 | 2.95 | 235 | 2389 |
Q-RRT* | 1341 | 676 | 1.82 | 200 | 2017 |
A-PRM | 1628 | 318 | 17.04 | 70 | 1946 |
A* | 1616 | 326 | 13.41 | 0 | 1942 |
PFT* | 1629 | 109 | 23.30 | 42 | 1738 |
算法 | 距离/ m | 势场值 | 最近障碍 距离/m | 越野距 离/m | 最近威胁 距离/m | 通行 代价 |
---|---|---|---|---|---|---|
FMT* | 1138 | 230 | 3.41 | 0 | 105 | 1368 |
Q-RRT* | 1046 | 158 | 1.76 | 0 | 150 | 1204 |
A-PRM | 1147 | 326 | 1.94 | 98 | 139 | 1473 |
A* | 1102 | 126 | 13.44 | 0 | 123 | 1228 |
PFT* | 1128 | 41 | 18.21 | 0 | 110 | 1169 |
Table 5 Comparison of simulated results (Scenario 4)
算法 | 距离/ m | 势场值 | 最近障碍 距离/m | 越野距 离/m | 最近威胁 距离/m | 通行 代价 |
---|---|---|---|---|---|---|
FMT* | 1138 | 230 | 3.41 | 0 | 105 | 1368 |
Q-RRT* | 1046 | 158 | 1.76 | 0 | 150 | 1204 |
A-PRM | 1147 | 326 | 1.94 | 98 | 139 | 1473 |
A* | 1102 | 126 | 13.44 | 0 | 123 | 1228 |
PFT* | 1128 | 41 | 18.21 | 0 | 110 | 1169 |
算法 | 距离/m | 势场值 | 最近障碍 距离/m | 越野距 离/m | 通行 代价 |
---|---|---|---|---|---|
FMT* | 1 302 | 668 | 3.30 | 80 | 1 970 |
Q-RRT* | 1 244 | 530 | 1.96 | 0 | 1 774 |
A-PRM | 1 276 | 236 | 11.11 | 0 | 1 512 |
A* | 1 262 | 186 | 5.01 | 0 | 1 448 |
PFT* | 1 338 | 97 | 18.12 | 0 | 1 435 |
Table 6 Comparison of simulated results (Scenario 5)
算法 | 距离/m | 势场值 | 最近障碍 距离/m | 越野距 离/m | 通行 代价 |
---|---|---|---|---|---|
FMT* | 1 302 | 668 | 3.30 | 80 | 1 970 |
Q-RRT* | 1 244 | 530 | 1.96 | 0 | 1 774 |
A-PRM | 1 276 | 236 | 11.11 | 0 | 1 512 |
A* | 1 262 | 186 | 5.01 | 0 | 1 448 |
PFT* | 1 338 | 97 | 18.12 | 0 | 1 435 |
算法 | 距离/m | 势场值 | 最近障碍 距离/m | 越野距 离/m | 最近威胁 距离/m | 通行 代价 |
---|---|---|---|---|---|---|
FMT* | 868 | 514 | 4.89 | 185 | 49 | 1382 |
Q-RRT* | 838 | 438 | 9.89 | 125 | 50 | 1276 |
A-PRM | 967 | 232 | 29.31 | 70 | 82 | 1199 |
A* | 915 | 490 | 13 | 0 | 0.45 | 1405 |
PFT* | 914 | 132 | 34.15 | 60 | 89 | 1046 |
Table 7 Comparison of simulated results (Scenario 6)
算法 | 距离/m | 势场值 | 最近障碍 距离/m | 越野距 离/m | 最近威胁 距离/m | 通行 代价 |
---|---|---|---|---|---|---|
FMT* | 868 | 514 | 4.89 | 185 | 49 | 1382 |
Q-RRT* | 838 | 438 | 9.89 | 125 | 50 | 1276 |
A-PRM | 967 | 232 | 29.31 | 70 | 82 | 1199 |
A* | 915 | 490 | 13 | 0 | 0.45 | 1405 |
PFT* | 914 | 132 | 34.15 | 60 | 89 | 1046 |
算法 | 距离/m | 势场值 | 最近障碍距离/m | 通行代价 |
---|---|---|---|---|
FMT* | 2 218 | 410 | 2.9 | 2 628 |
Q-RRT* | 2 188 | 144 | 3.3 | 2 332 |
A-PRM | 2 359 | 180 | 16.1 | 2 539 |
A* | 2 403 | 144 | 13.4 | 2 547 |
PFT* | 2 274 | 0 | 44.2 | 2 274 |
Table 8 Planning data comparison in elevation map (Scenario 7)
算法 | 距离/m | 势场值 | 最近障碍距离/m | 通行代价 |
---|---|---|---|---|
FMT* | 2 218 | 410 | 2.9 | 2 628 |
Q-RRT* | 2 188 | 144 | 3.3 | 2 332 |
A-PRM | 2 359 | 180 | 16.1 | 2 539 |
A* | 2 403 | 144 | 13.4 | 2 547 |
PFT* | 2 274 | 0 | 44.2 | 2 274 |
[1] |
陈慧岩, 张玉. 军用地面无人机动平台技术发展综述[J]. 兵工学报, 2014, 35(10):1696-1706.
doi: 10.3969/j.issn.1000-1093.2014.10.026 |
|
|
[2] |
李立, 徐志刚, 赵祥模, 等. 智能网联汽车运动规划方法研究综述[J]. 中国公路学报, 2019, 32(6):20-33.
doi: 10.19721/j.cnki.1001-7372.2019.06.002 |
doi: 10.19721/j.cnki.1001-7372.2019.06.002 |
|
[3] |
采国顺, 刘昊吉, 冯吉伟, 等. 智能汽车的运动规划与控制研究综述[J]. 汽车安全与节能学报, 2021, 12(3): 279-297.
|
|
|
[4] |
孔国杰, 冯时, 于会龙, 等. 无人集群系统协同运动规划技术综述[J]. 兵工学报, 2023, 44(1):11-26.
doi: 10.12382/bgxb.2022.0930 |
doi: 10.12382/bgxb.2022.0930 |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
田洪清, 王建强, 黄荷叶, 等. 越野环境下基于势能场模型的智能车概率图路径规划方法[J]. 兵工学报, 2021, 42(7):1496-1505.
|
|
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
周维, 过学迅, 裴晓飞, 等. 基于RRT与MPC的智能车辆路径规划与跟踪控制研究[J]. 汽车工程, 2020, 42(9): 1151-1158.
|
|
|
[18] |
冯来春, 梁华为, 杜明博, 等. 基于A*引导域的RRT智能车辆路径规划算法[J]. 计算机系统应用, 2017, 26(8):127-133.
|
|
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
张立彬, 林后凯, 谭大鹏. 基于栅格空间的自适应GB_RRT*机械臂路径规划[J]. 计算机集成制造系统, 2022, 28(6):28-37.
|
|
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
潘作栋, 周悦, 郭威, 等. 基于CB-RRT*算法的滩涂履带车路径规划[J]. 兵工学报, 2023, 2023, 21(4):1496-1505.
|
|
|
[32] |
|
[33] |
|
[34] |
李爱娟, 李舜酩, 李殿荣, 等. 智能车运动轨迹规划中的关键技术研究现状[J]. 机械科学与技术, 2013, 32(7):1022-1026.
|
|
|
[35] |
田洪清, 丁峰, 郑讯佳, 等. 基于势能场虚拟力的智能网联车辆运动规划[J]. 汽车工程, 2021, 43(4):518-526.
|
|
[1] | JI Peng, GUO Minghao. Local Path Planning for Unmanned Ground Vehicles Based on Improved Artificial Potential Field Method in Frenet Coordinate System [J]. Acta Armamentarii, 2024, 45(7): 2097-2109. |
[2] | WANG Xiaolong, CHEN Yang, HU Mian, LI Xudong. Robot Path Planning for Persistent Monitoring Based on Improved Deep Q Networks [J]. Acta Armamentarii, 2024, 45(6): 1813-1823. |
[3] | PAN Zuodong, ZHOU Yue, GUO Wei, XU Gaofei, SUN Yu. Path Planning of Tidal Flat Tracked Vehicle Based on CB-RRT* Algorithm [J]. Acta Armamentarii, 2024, 45(4): 1117-1128. |
[4] | LU Ying, PANG Lichen, CHEN Yusi, SONG Wanying, FU Yanfang. A Swarm Intelligence Algorithm for UAV Path Planning in Urban Warfare [J]. Acta Armamentarii, 2023, 44(S2): 146-156. |
[5] | LI Song, MA Zhuangzhuang, ZHANG Yunlin, SHAO Jinliang. Multi-agent Coverage Path Planning Based on Security Reinforcement Learning [J]. Acta Armamentarii, 2023, 44(S2): 101-113. |
[6] | LI Zhaodong, ZHAO Xijun, YANG Tingting, QI Xiaolong, ZHOU Changyi, ZHANG Liming. Key Technologies and Application Prospects for High-definition Map in Off-road Environments [J]. Acta Armamentarii, 2023, 44(S2): 1-11. |
[7] | YIN Yiyi, WANG Xiaofang, ZHOU Jian. Q-Learning-based Multi-UAV Cooperative Path Planning Method [J]. Acta Armamentarii, 2023, 44(2): 484-495. |
[8] | FU Jinbo, ZHANG Dong, WANG Mengyang, ZHAO Junmin. Unmanned Aerial Vehicle Path Planning for Improved Target Positioning Accuracy [J]. Acta Armamentarii, 2023, 44(11): 3394-3406. |
[9] | WANG Kang, SI Peng, CHEN Li, LI Zhongxin, WU Zhilin. 3D Path Planning of Unmanned Aerial Vehicle Based on Enhanced Sand Cat Swarm Optimization Algorithm [J]. Acta Armamentarii, 2023, 44(11): 3382-3393. |
[10] | TAO Junfeng, LIU Hai’ou, GUAN Haijie, CHEN Huiyan, ZANG Zheng. Path Planning of Unmanned Tracked Vehicle Based on Terrain Traversability Estimation [J]. Acta Armamentarii, 2023, 44(11): 3320-3332. |
[11] | JIANG Yan, DING Yuyan, ZHANG Xinglong, XU Xin. A Human-machine Collaborative Control Algorithm for Intelligent Vehicles Based on Model Prediction and Policy Learning [J]. Acta Armamentarii, 2023, 44(11): 3465-3477. |
[12] | ZHANG Lei, FANG Yang-wang, CHAI Dong, YONG Xiao-ju. Cruise Missile Path Planning Based on Improved Quantum Evolutionary Algorithm [J]. Acta Armamentarii, 2014, 35(11): 1820-1827. |
[13] | FU Yang-guang, ZHOU Cheng-ping2, HU Han-ping2. Research on Differential Evolution Algorithm for Path Planning for Unmanned Aerial Vehicle inOcean Environment [J]. Acta Armamentarii, 2012, 33(3): 295-300. |
[14] | JIANG Yan-hua, XIONG Guang-ming, JIANG Yan, GONG Jian-wei, CHEN Hui-yan. A Review of Visual Odometry for Intelligent Vehicles [J]. Acta Armamentarii, 2012, 33(2): 214-220. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||