Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (10): 3538-3554.doi: 10.12382/bgxb.2023.0777
Previous Articles Next Articles
WANG Wei1,2, YU Zhichen1,2, LIN Shiyao3,*(), YANG Jing1,2, WANG Hong4
Received:
2023-08-22
Online:
2024-02-04
Contact:
LIN Shiyao
CLC Number:
WANG Wei, YU Zhichen, LIN Shiyao, YANG Jing, WANG Hong. Three-dimensional Leader-follower Cooperative Guidance Law for Maneuvering Targets[J]. Acta Armamentarii, 2024, 45(10): 3538-3554.
Add to citation manager EndNote|Ris|BibTeX
飞行器 | 相对 距离/ km | 相对 速度/ (m·s-1) | 视线 倾角/ (°) | 视线 偏角/ (°) | 期望终 端视线 倾角/(°) | 期望终 端视线 偏角/(°) |
---|---|---|---|---|---|---|
M0 | 10.0 | -400 | -45 | 30 | -35 | 15 |
M1 | 11.0 | -320 | -60 | 10 | -30 | 30 |
M2 | 13.0 | -400 | -45 | 30 | -20 | 50 |
M3 | 12.0 | -380 | -30 | 40 | -60 | 10 |
M4 | 10.5 | -350 | -20 | 60 | -50 | 40 |
Table 1 Initial conditions of multiple flight vehicles
飞行器 | 相对 距离/ km | 相对 速度/ (m·s-1) | 视线 倾角/ (°) | 视线 偏角/ (°) | 期望终 端视线 倾角/(°) | 期望终 端视线 偏角/(°) |
---|---|---|---|---|---|---|
M0 | 10.0 | -400 | -45 | 30 | -35 | 15 |
M1 | 11.0 | -320 | -60 | 10 | -30 | 30 |
M2 | 13.0 | -400 | -45 | 30 | -20 | 50 |
M3 | 12.0 | -380 | -30 | 40 | -60 | 10 |
M4 | 10.5 | -350 | -20 | 60 | -50 | 40 |
x/m | y/m | z/m | 速度/(m·s-1) |
---|---|---|---|
0 | 0 | 0 | 100 |
Table 2 Initial condition of target
x/m | y/m | z/m | 速度/(m·s-1) |
---|---|---|---|
0 | 0 | 0 | 100 |
参数 | 数值 | 参数 | 数值 | 参数 | 数值 |
---|---|---|---|---|---|
Lr | 100 | Lθ | 100 | Lϕ | 150 |
σr | 0.1 | = | 6 | δθ=δϕ | 0.01 |
Tu | 0.1 | = | 3 | qθ=qϕ | 1.2 |
α1r | 0.7 | = | 1 | η1θ=η1ϕ | 0.01 |
β1r | 1.2 | σθ=σϕ | 0.1 | η2θ=η2ϕ | 0.01 |
k1r | 1 | k1θ=k1ϕ | 7 | η3θ=η3ϕ | 0.5 |
k2r | 1 | k2θ=k2ϕ | 7 | m1θ=m1ϕ | 1.8 |
k3r | 10 | pθ=pϕ | 0.5 | m2θ=m2ϕ | 0.6 |
Table 3 Cooperative guidance law parameters
参数 | 数值 | 参数 | 数值 | 参数 | 数值 |
---|---|---|---|---|---|
Lr | 100 | Lθ | 100 | Lϕ | 150 |
σr | 0.1 | = | 6 | δθ=δϕ | 0.01 |
Tu | 0.1 | = | 3 | qθ=qϕ | 1.2 |
α1r | 0.7 | = | 1 | η1θ=η1ϕ | 0.01 |
β1r | 1.2 | σθ=σϕ | 0.1 | η2θ=η2ϕ | 0.01 |
k1r | 1 | k1θ=k1ϕ | 7 | η3θ=η3ϕ | 0.5 |
k2r | 1 | k2θ=k2ϕ | 7 | m1θ=m1ϕ | 1.8 |
k3r | 10 | pθ=pϕ | 0.5 | m2θ=m2ϕ | 0.6 |
制导律 | 飞行器 | 拦截时间/s | 脱靶量/m | 相对速度误差/(m·s-1) | 视线倾角误差/(°) | 视线偏角误差/(°) |
---|---|---|---|---|---|---|
M0 | 33.6881 | 0.0036 | 0 | 0.0010 | 0.0010 | |
M1 | 33.6881 | 0.0589 | 0.9397 | 0.0007 | 0.0005 | |
本文所设计制导律 | M2 | 33.6881 | 0.0344 | 1.1491 | 0.0012 | 0.0008 |
M3 | 33.6881 | 0.0922 | 1.1163 | 0.0010 | 0.0009 | |
M4 | 33.6881 | 0.1131 | 1.3599 | 0.0013 | 0.0007 | |
M0 | 28.6331 | 0.0049 | 0 | 0.0021 | 0.0021 | |
M1 | 28.6331 | 1.6427 | 8.9231 | 0.0018 | 0.0019 | |
有限时间协同制导律 | M2 | 28.6331 | 1.5375 | 9.2391 | 0.0019 | 0.0021 |
M3 | 28.6331 | 1.5188 | 13.1363 | 0.0018 | 0.0016 | |
M4 | 28.6331 | 1.3368 | 12.7499 | 0.0023 | 0.0025 |
Table 4 Interception time and guidance errors
制导律 | 飞行器 | 拦截时间/s | 脱靶量/m | 相对速度误差/(m·s-1) | 视线倾角误差/(°) | 视线偏角误差/(°) |
---|---|---|---|---|---|---|
M0 | 33.6881 | 0.0036 | 0 | 0.0010 | 0.0010 | |
M1 | 33.6881 | 0.0589 | 0.9397 | 0.0007 | 0.0005 | |
本文所设计制导律 | M2 | 33.6881 | 0.0344 | 1.1491 | 0.0012 | 0.0008 |
M3 | 33.6881 | 0.0922 | 1.1163 | 0.0010 | 0.0009 | |
M4 | 33.6881 | 0.1131 | 1.3599 | 0.0013 | 0.0007 | |
M0 | 28.6331 | 0.0049 | 0 | 0.0021 | 0.0021 | |
M1 | 28.6331 | 1.6427 | 8.9231 | 0.0018 | 0.0019 | |
有限时间协同制导律 | M2 | 28.6331 | 1.5375 | 9.2391 | 0.0019 | 0.0021 |
M3 | 28.6331 | 1.5188 | 13.1363 | 0.0018 | 0.0016 | |
M4 | 28.6331 | 1.3368 | 12.7499 | 0.0023 | 0.0025 |
[1] |
魏明英, 崔正达, 李运迁. 多弹协同拦截综述与展望[J]. 航空学报, 2020, 41(增刊1): 29-36.
|
|
|
[2] |
姚禹正, 余文斌, 杨立军, 等. 多导弹协同制导技术综述[J]. 飞航导弹, 2021(6): 112-121.
|
|
|
[3] |
赵建博, 杨树兴. 多导弹协同制导研究综述[J]. 航空学报, 2017, 38(1): 17-29.
|
|
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
王雨辰, 王伟, 林时尧, 等. 考虑攻击时间及空间角度约束的三维自适应滑模协同制导律设计[J]. 兵工学报, 2023, 44(9): 2778-2790.
doi: 10.12382/bgxb.2022.1086 |
doi: 10.12382/bgxb.2022.1086 |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
张明洋, 晁涛, 杨明. 带有攻击角约束的机动目标协同拦截制导律[J]. 战术导弹技术, 2022(4): 78-89.
|
|
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[1] | YU Hang, LI Qingyu, DAI Keren, LI Haojie, ZOU Yao, ZHANG He. Three-dimensional Adaptive Fixed-time Multi-missile Cooperative Guidance Law [J]. Acta Armamentarii, 2024, 45(8): 2646-2657. |
[2] | ZHAO Xinyun, YU Jianqiao. Dynamic Modeling and Attitude Control for Novel Agile Projectile [J]. Acta Armamentarii, 2024, 45(7): 2182-2196. |
[3] | WU Hao, LI Dongguang, WANG Yong’an. Time-to-go Estimation Method for Anti-ship Missiles with Large Lead Angle in Three-dimensional Space [J]. Acta Armamentarii, 2024, 45(5): 1449-1459. |
[4] | PEI Xinyue, YU Yong, LI Zheng, LI Jiaxun, YU Jianqiao. Control of Quick Turning of Missile with Lateral Thrust and Aerodynamics Based on Neural Network [J]. Acta Armamentarii, 2024, 45(10): 3564-3576. |
[5] | ZHANG Tianyi, ZHENG Ying, QIU Xinguo, JI Xingjian, JIN Xiaohang. Disturbance Compensation Strategy for Fifth-order Joint Servomechanism Based on Characteristic Model [J]. Acta Armamentarii, 2024, 45(1): 276-287. |
[6] | XU Peng, XING Boyang, LIU Yufei, LI Yongyao, ZENG Yi, ZHENG Dongdong. Anti-disturbance Composite Controller Design of Quadruped Robot Based on Extended State Observer and Model Predictive Control Technique [J]. Acta Armamentarii, 2023, 44(S2): 12-21. |
[7] | WANG Yuchen, WANG Wei, LIN Shiyao, YANG Jing, WANG Shaolong, YIN Zhao. Three-dimensional Adaptive Sliding Mode Cooperative Guidance Law with Impact Time and Angle Constraints [J]. Acta Armamentarii, 2023, 44(9): 2778-2790. |
[8] | WANG Zhilin, WANG Jiang, QI Qi, FAN Shipeng. Novel Adaptive Robust Roll Control Method Based on LESO [J]. Acta Armamentarii, 2023, 44(7): 1920-1929. |
[9] | GAO Qiang, HOU Yuanlong, LÜ Mingming, MAO Bin, HOU Runmin, YANG Shuyi, WU Bin. A Marching Stable Control Method for a New Vehicle-Mounted Multi-Tube Load [J]. Acta Armamentarii, 2023, 44(3): 736-747. |
[10] | YOU Hao, CHANG Xinlong, ZHAO Jiufen, ZHANG Youhong, WANG Shunhong. Three-dimensional Leader-follower Cooperative Guidance Law with Impact Angle Constraints [J]. Acta Armamentarii, 2023, 44(11): 3369-3381. |
[11] | LIU Wang-sheng, PAN Hai-peng, LI Ya-an. A Fuzzy Adaptive Algorithm for Maneuvering Target Based on Current Statistical Model [J]. Acta Armamentarii, 2016, 37(11): 2037-2043. |
[12] | WANG Jian-chen, QI Xiao-hui. Sensor Fault Estimation Method for Flight Control Systems Based on Aerodynamic Parameter Identification [J]. Acta Armamentarii, 2015, 36(1): 103-110. |
[13] | ZHENG Ying, MA Da-wei, YAO Jian-yong, HU Jian. Active Disturbance Rejection Control for Position Servo System of Rocket Launcher [J]. Acta Armamentarii, 2014, 35(5): 597-603. |
[14] | FU Wei, ZHENG Bin. Electrostatic Maneuvering Target Tracking Based on Fuzzy Interacting Multiple Model Particle Filter [J]. Acta Armamentarii, 2014, 35(1): 42-48. |
[15] | QI Xiao-hui, LI Jie, HAN Shuai-tao . Adaptive Active Disturbance Rejection Control and Its Simulation Based on BP Neural Network [J]. Acta Armamentarii, 2013, 34(6): 776-782. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||