Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (1): 166-183.doi: 10.12382/bgxb.2023.0533
Previous Articles Next Articles
LIU Jiangtao1,2, ZHOU Lelai1,2,*(), LI Yibin1,2
Received:
2023-05-29
Online:
2024-01-30
Contact:
ZHOU Lelai
CLC Number:
LIU Jiangtao, ZHOU Lelai, LI Yibin. Trajectory Tracking and Obstacle Avoidance Control of Six-wheel Independent Drive and Steering Robot in Complex Terrain[J]. Acta Armamentarii, 2024, 45(1): 166-183.
Add to citation manager EndNote|Ris|BibTeX
参数 | 取值 |
---|---|
机器人尺寸(长×宽×高)/mm | 700×500×550 |
机器人整机质量/kg | 212 |
轮胎尺寸/mm | 宽80,直径215 |
驱动电机最大扭矩/(N·m) | 500 |
转向电机最大扭矩/(N·m) | 500 |
Table 1 Robot parameters
参数 | 取值 |
---|---|
机器人尺寸(长×宽×高)/mm | 700×500×550 |
机器人整机质量/kg | 212 |
轮胎尺寸/mm | 宽80,直径215 |
驱动电机最大扭矩/(N·m) | 500 |
转向电机最大扭矩/(N·m) | 500 |
控制器类型 | 参数 | 数值 |
---|---|---|
PID控制器 | 系数 | kp:110, ki:0.1, kd:0.30 |
采样时间/ms | 10 | |
Pure Pursuit | 前视距离系数 | 0.15 |
控制器 | 前视距离/m | 1.2 |
采样时间/ms | 10 | |
MPC采样周期/ms | 50 | |
MPC控制器 | MPC控制步长 | 30 |
MPC预测步长 | 60 | |
MPC采样周期/ms | 50 | |
MPC控制步长 | 30 | |
MPC预测步长 | 60 | |
本文控制器 | PID采样周期/ms | 10 |
Yaw角放大倍数 | 1.13~1.25 | |
PID常数项比例系数 | kp:0.25, ki:0.05, kd:0.10 | |
PID增益项比例系数 | λ1:5, λ2:1.5, λ3:2 |
Table 2 Concave slope experimental parameters
控制器类型 | 参数 | 数值 |
---|---|---|
PID控制器 | 系数 | kp:110, ki:0.1, kd:0.30 |
采样时间/ms | 10 | |
Pure Pursuit | 前视距离系数 | 0.15 |
控制器 | 前视距离/m | 1.2 |
采样时间/ms | 10 | |
MPC采样周期/ms | 50 | |
MPC控制器 | MPC控制步长 | 30 |
MPC预测步长 | 60 | |
MPC采样周期/ms | 50 | |
MPC控制步长 | 30 | |
MPC预测步长 | 60 | |
本文控制器 | PID采样周期/ms | 10 |
Yaw角放大倍数 | 1.13~1.25 | |
PID常数项比例系数 | kp:0.25, ki:0.05, kd:0.10 | |
PID增益项比例系数 | λ1:5, λ2:1.5, λ3:2 |
控制器类型 | 参数 | 数值 |
---|---|---|
PID控制器 | 系数 | kp:110, ki:0.1, kd:0.30 |
采样时间/ms | 10 | |
Pure Pursuit | 前视距离系数 | 0.15 |
控制器 | 前视距离/m | 1.2 |
采样时间/ms | 10 | |
MPC采样周期/ms | 50 | |
MPC控制器 | MPC控制步长 | 30 |
MPC预测步长 | 60 | |
MPC采样周期/ms | 50 | |
MPC控制步长 | 30 | |
MPC预测步长 | 60 | |
本文控制器 | PID采样周期/ms | 10 |
Yaw角放大倍数 | 1.13~1.35 | |
PID常数项比例系数 | kp:0.30, ki:0.10, kd:0.15 | |
PID增益项比例系数 | λ1:5.5, λ2:1.5, λ3:2.5 |
Table 3 Convex ramp experimental parameters
控制器类型 | 参数 | 数值 |
---|---|---|
PID控制器 | 系数 | kp:110, ki:0.1, kd:0.30 |
采样时间/ms | 10 | |
Pure Pursuit | 前视距离系数 | 0.15 |
控制器 | 前视距离/m | 1.2 |
采样时间/ms | 10 | |
MPC采样周期/ms | 50 | |
MPC控制器 | MPC控制步长 | 30 |
MPC预测步长 | 60 | |
MPC采样周期/ms | 50 | |
MPC控制步长 | 30 | |
MPC预测步长 | 60 | |
本文控制器 | PID采样周期/ms | 10 |
Yaw角放大倍数 | 1.13~1.35 | |
PID常数项比例系数 | kp:0.30, ki:0.10, kd:0.15 | |
PID增益项比例系数 | λ1:5.5, λ2:1.5, λ3:2.5 |
控制器类型 | 参数 | 数值 |
---|---|---|
PID控制器 | 系数 | kp:110, ki:0.1, kd:0.30 |
采样时间/ms | 10 | |
Pure Pursuit | 前视距离系数 | 0.15 |
控制器 | 前视距离/m | 1.2 |
采样时间/ms | 10 | |
MPC采样周期/ms | 50 | |
MPC控制器 | MPC控制步长 | 30 |
MPC预测步长 | 60 | |
MPC采样周期/ms | 50 | |
MPC控制步长 | 30 | |
MPC预测步长 | 60 | |
本文控制器 | PID采样周期/ms | 10 |
Yaw角放大倍数 | 1.2~1.4 | |
PID常数项比例系数 | kp:0.32, ki:0.13, kd:0.16 | |
PID增益项比例系数 | λ1:5.8, λ2:1.6, λ3:2.8 |
Table 4 Experimental parameters of uneven and convex roads
控制器类型 | 参数 | 数值 |
---|---|---|
PID控制器 | 系数 | kp:110, ki:0.1, kd:0.30 |
采样时间/ms | 10 | |
Pure Pursuit | 前视距离系数 | 0.15 |
控制器 | 前视距离/m | 1.2 |
采样时间/ms | 10 | |
MPC采样周期/ms | 50 | |
MPC控制器 | MPC控制步长 | 30 |
MPC预测步长 | 60 | |
MPC采样周期/ms | 50 | |
MPC控制步长 | 30 | |
MPC预测步长 | 60 | |
本文控制器 | PID采样周期/ms | 10 |
Yaw角放大倍数 | 1.2~1.4 | |
PID常数项比例系数 | kp:0.32, ki:0.13, kd:0.16 | |
PID增益项比例系数 | λ1:5.8, λ2:1.6, λ3:2.8 |
参数 | 障碍物A | 障碍物B |
---|---|---|
质心初始坐标/m | (0.8,3.2) | (5.4,3.2) |
长×宽×高/m | 0.3×0.3×0.5 | 0.3×0.3×0.5 |
质量/kg | 50 | 50 |
移动速度/(m·s-1) | 0 | 0.14~0.15 |
Table 5 Obstacle information
参数 | 障碍物A | 障碍物B |
---|---|---|
质心初始坐标/m | (0.8,3.2) | (5.4,3.2) |
长×宽×高/m | 0.3×0.3×0.5 | 0.3×0.3×0.5 |
质量/kg | 50 | 50 |
移动速度/(m·s-1) | 0 | 0.14~0.15 |
Fig.29 Representation of distance deviation between the robot and the reference trajectories by the dynamic window method and the obstacle avoidance method in the paper
Fig.30 The distance between the robot’s center of mass and the center of the obstacle’s center of mass expressed by the dynamic window method and the obstacle avoidance method in the paper
[1] |
doi: 10.1109/LSP.2016. URL |
[2] |
doi: 10.1109/TVT.25 URL |
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
doi: 10.1109/TIV.2020.3045837 URL |
[8] |
doi: 10.1109/TVT.2022.3140240 URL |
[9] |
doi: 10.1109/TSMC.6221021 URL |
[10] |
|
[11] |
|
[12] |
doi: 10.1109/TVT.2022.3152542 URL |
[13] |
doi: 10.1109/LRA.2022.3161710 URL |
[14] |
|
[15] |
doi: 10.1109/TSMC.2019.2962732 URL |
[16] |
doi: 10.1109/OJITS.2021.3137931 URL |
[17] |
|
[18] |
严浙平, 杨皓宇, 张伟, 等. 基于模型预测—中枢模式发生器的六足机器人轨迹跟踪控制[J]. 机器人, 2023, 45(1):58-69.
|
|
|
[19] |
|
[20] |
张超省, 王健, 张林, 等. 面向复杂障碍场的多智能体系统集群避障模型[J]. 兵工学报, 2021, 42(1):141-150.
|
doi: 10.3969/j.issn.1000-1093.2021.01.016 |
|
[21] |
邓海鹏, 麻斌, 赵海光, 等. 自主驾驶车辆紧急避障的路径规划与轨迹跟踪控制[J]. 兵工学报, 2020, 41(3): 585-594.
doi: 10.3969/j.issn.1000-1093.2020.03.020 |
doi: 10.3969/j.issn.1000-1093.2020.03.020 |
|
[22] |
杜广泽, 张旭东, 邹渊, 等. 非结构道路场景下轮式无人车辆避障算法[J]. 兵工学报, 2020, 41(10): 2096-2105.
doi: 10.3969/j.issn.1000-1093.2020.10.020 |
doi: 10.3969/j.issn.1000-1093.2020.10.020 |
|
[23] |
张家闻, 房浩霖, 李家旺. 基于复杂约束条件的欠驱动AUV三维路径规划[J]. 兵工学报, 2022, 43(6): 1407-1414.
doi: 10.12382/bgxb.2021.0340 |
doi: 10.12382/bgxb.2021.0340 |
[1] | LI Caoyan, GUO Zhenchuan, ZHENG Dongdong, WEI Yanling. Multi-robot Cooperative Formation Based on Distributed Model Predictive Control [J]. Acta Armamentarii, 2023, 44(S2): 178-190. |
[2] | XU Peng, ZHAO Jianxin, FAN Wenhui, QIU Tianqi, JIANG Lei, LIANG Zhenjie, LIU Yufei. Specific Complex Locomotion Skills Control for Quadruped Robots [J]. Acta Armamentarii, 2023, 44(S2): 135-145. |
[3] | XU Peng, XING Boyang, LIU Yufei, LI Yongyao, ZENG Yi, ZHENG Dongdong. Anti-disturbance Composite Controller Design of Quadruped Robot Based on Extended State Observer and Model Predictive Control Technique [J]. Acta Armamentarii, 2023, 44(S2): 12-21. |
[4] | DU Hongbao, WANG Zhengjie, TANG Lixi, ZHANG Xiaoning. Control Barrier Function-based Control for Aircraft Avoidance and Guidance with Dynamic Obstacles [J]. Acta Armamentarii, 2023, 44(9): 2814-2823. |
[5] | LU Jiaxing, LIU Haiou, GUAN Haijie, LI Derun, CHEN Huiyan, LIU Longlong. Trajectory Tracking Control of Unmanned Tracked Vehicles Based on Adaptive Dual-Parameter Optimization [J]. Acta Armamentarii, 2023, 44(4): 960-971. |
[6] | ZHANG Yuanbo, XIANG Changle, WANG Weida, CHEN Yongdan. A Particle Swarm Optimization and Ant Colony Optimization Fusion Algorithm-based Model Predictve Torque Coordnation Control Strategy for Distributed Electric Drive Vehicle [J]. Acta Armamentarii, 2023, 44(11): 3253-3258. |
[7] | JIANG Yan, DING Yuyan, ZHANG Xinglong, XU Xin. A Human-machine Collaborative Control Algorithm for Intelligent Vehicles Based on Model Prediction and Policy Learning [J]. Acta Armamentarii, 2023, 44(11): 3465-3477. |
[8] | TANG Zeyue, LIU Haiou, XUE Mingxuan, CHEN Huiyan, GONG Xiaojie, TAO Junfeng. Trajectory Tracking Control of Dual Independent Electric Drive Unmanned Tracked Vehicle Based on MPC-MFAC [J]. Acta Armamentarii, 2023, 44(1): 129-139. |
[9] | SONG Jiarui, TAO Gang, LI Derun, ZANG Zheng, WU Shaobin, GONG Jianwei. Robust Model Predictive Control for Manned and Unmanned Vehicle Formation Based on Parameter Self-Optimization [J]. Acta Armamentarii, 2023, 44(1): 84-97. |
[10] | ZHOU Qiu, ZHOU Yue, SUN Hongming, GUO Wei, WU Kai, LAN Yanjun. Path Planning and Tracking Control Method of Deep-Sea Landing Vehicle [J]. Acta Armamentarii, 2023, 44(1): 298-306. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||