
					Acta Armamentarii ›› 2023, Vol. 44 ›› Issue (4): 1071-1085.doi: 10.12382/bgxb.2022.0890
Previous Articles Next Articles
					
													GAO  Yuxuan, HOU  Yuanlong*(
), GAO  Qiang, HOU  Runmin
												  
						
						
						
					
				
Received:2022-10-05
															
							
															
							
															
							
							
																	Online:2023-04-28
															
						Contact:
								HOU  Yuanlong   
																					GAO Yuxuan, HOU Yuanlong, GAO Qiang, HOU Runmin. Compound Control Method of ADRC and FNTSM for Airborne Object Tracking System[J]. Acta Armamentarii, 2023, 44(4): 1071-1085.
Add to citation manager EndNote|Ris|BibTeX
| 控制器 | 到达时间/s | 最大误差/rad | RMSE/rad | 
|---|---|---|---|
| FCADRNTSM | 0.305 | 0.025 | 0.0053 | 
| LADRC | 0.728 | 0.026 | 0.0061 | 
| SMC | 1.028 | 0.017 | 0.0040 | 
Table 1 Simulation results of step response
| 控制器 | 到达时间/s | 最大误差/rad | RMSE/rad | 
|---|---|---|---|
| FCADRNTSM | 0.305 | 0.025 | 0.0053 | 
| LADRC | 0.728 | 0.026 | 0.0061 | 
| SMC | 1.028 | 0.017 | 0.0040 | 
| 控制器 | 到达时间/s | 最大误差/rad | RMSE/rad | 
|---|---|---|---|
| FCADRNTSM | 0.168 | 0.026 | 0.0049 | 
| LADRC | 5.165 | 0.115 | 0.0741 | 
| SMC | 0.961 | 0.016 | 0.0021 | 
Table 2 Simulation results with sinusoidal input
| 控制器 | 到达时间/s | 最大误差/rad | RMSE/rad | 
|---|---|---|---|
| FCADRNTSM | 0.168 | 0.026 | 0.0049 | 
| LADRC | 5.165 | 0.115 | 0.0741 | 
| SMC | 0.961 | 0.016 | 0.0021 | 
| 输入信号 | 到达时间/s | 最大误差/rad | RMSE/rad | |||
|---|---|---|---|---|---|---|
| FCADRNTSM 方法  |  DOB+AETVSMC 方法  |  FCADRNTSM 方法  |  DOB+AETVSMC 方法  |  FCADRNTSM 方法  |  DOB+AETVSMC 方法  | |
| 5sin | 0.088 | 0.927 | 0.026 | 0.028 | 0.0047 | 0.0042 | 
| 5sin | 0.087 | 0.942 | 0.026 | 0.029 | 0.0049 | 0.0043 | 
| 5sin | 0.342 | 0.978 | 0.027 | 0.028 | 0.0053 | 0.0048 | 
| 5sin | 0.339 | 1.017 | 0.026 | 0.027 | 0.0054 | 0.0053 | 
Table 3 Comparison of tracking errors with different input signals
| 输入信号 | 到达时间/s | 最大误差/rad | RMSE/rad | |||
|---|---|---|---|---|---|---|
| FCADRNTSM 方法  |  DOB+AETVSMC 方法  |  FCADRNTSM 方法  |  DOB+AETVSMC 方法  |  FCADRNTSM 方法  |  DOB+AETVSMC 方法  | |
| 5sin | 0.088 | 0.927 | 0.026 | 0.028 | 0.0047 | 0.0042 | 
| 5sin | 0.087 | 0.942 | 0.026 | 0.029 | 0.0049 | 0.0043 | 
| 5sin | 0.342 | 0.978 | 0.027 | 0.028 | 0.0053 | 0.0048 | 
| 5sin | 0.339 | 1.017 | 0.026 | 0.027 | 0.0054 | 0.0053 | 
| [1] |  
											 毕永利. 多框架光电平台控制系统研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2003. 
																						 | 
										
|  
											 | 
										|
| [2] |  
											 张平. 机载/弹载视觉导引稳定平台的建模与控制[M]. 北京: 国防工业出版社, 2011. 
																						 | 
										
|  
											 | 
										|
| [3] |  
											 doi: 10.1080/00207721.2017.1387315 URL  | 
										
| [4] |  
											 韩京清. 自抗扰控制技术[M]. 北京: 国防工业出版社, 2008. 
																						 | 
										
|  
											 | 
										|
| [5] |  
											 doi: 10.1007/s11071-020-05845-7  | 
										
| [6] |  
											 doi: 10.1109/TAC.2016.2605043 URL  | 
										
| [7] |  
											 doi: 10.1109/TIA.2014.2328711 URL  | 
										
| [8] |  
											 夏元清, 付梦印, 邓志红, 等. 滑模控制和自抗扰控制的研究进展[J]. 控制理论与应用, 2013(2):137-147. 
																						 | 
										
|  
											 | 
										|
| [9] |  
											 doi: 10.1109/TIE.2015.2504343 URL  | 
										
| [10] |  
											 doi: 10.1109/TMECH.2021.3068192 URL  | 
										
| [11] |  
											 doi: 10.1109/TIE.2021.3057015 URL  | 
										
| [12] |  
											 doi: 10.1016/j.isatra.2021.03.033 URL  | 
										
| [13] |  
											 doi: 10.1016/j.isatra.2016.01.022 pmid: 26928516  | 
										
| [14] |  
											 谢瑞宏. 机载光电平台伺服系统稳定与跟踪控制技术的研究[D]. 长春: 中国科学院大学, 2017. 
																						 | 
										
|  
											 | 
										|
| [15] |  
											 吕宏宇, 金刚石, 高旭辉. 两轴四框架机载光电平台稳定原理分析[J]. 激光与红外, 2015, 45(2): 194-198. 
																						 | 
										
|  
											 | 
										|
| [16] |  
											 吕俊伟, 何友金, 韩艳丽. 光电跟踪测量原理[M]. 北京: 国防工业出版社, 2010. 
																						 | 
										
|  
											 | 
										|
| [17] |  
											 吕明明. 车载光电跟踪系统目标跟踪关键技术研究[D]. 南京: 南京理工大学, 2021. 
																						 | 
										
|  
											 | 
										|
| [18] |  
											 王婉婷. 基于高精度辨识的复合轴控制策略研究[D]. 长春: 中国科学院大学, 2017. 
																						 | 
										
|  
											 | 
										|
| [19] |  
											 | 
										
| [20] |  
											 高为炳. 变结构控制的理论及设计方法[M]. 北京: 科学出版社, 1996. 
																						 | 
										
|  
											 | 
										|
| [21] |  
											 黄一, 薛文超. 自抗扰控制: 思想、应用及理论分析[J]. 系统科学与数学, 2012, 32(10):1287-1307. 
																						 | 
										
|  
											 | 
										|
| [22] |  
											 苗双全, 张宝泉, 王明超, 等. 基于扰动观测器的机载光电稳定平台自适应指数时变滑模控制[J]. 兵工学报, 2022, 43(7):1636-1645.  
																							doi: 10.12382/bgxb.2021.0229  | 
										
|  
											 | 
										
| [1] | DING Wengjun, ZHANG Guozong, LIU Haimin, CHAI Yajun, WANG Chiyu, MAO Zhaoyong. Tracking Control of Underactuated Autonomous Underwater Vehicle Formation under Current Disturbance and Communication Delay [J]. Acta Armamentarii, 2024, 45(1): 184-196. | 
| [2] | WANG Zhilin, WANG Jiang, QI Qi, FAN Shipeng. Novel Adaptive Robust Roll Control Method Based on LESO [J]. Acta Armamentarii, 2023, 44(7): 1920-1929. | 
| [3] | MA Yuemeng, WANG Linwei, SHAO Chuntao, ZHOU Di, WANG Yonghai. Active-Disturbance-Rejection/Robust Attitude Control System Design of Underactuated Vehicle Based on Flap Control [J]. Acta Armamentarii, 2023, 44(5): 1251-1266. | 
| [4] | SUN Hao, SUN Qinglin, SUN Mingwei, CHEN Zengqiang. Parafoil-based UAV Recovery System Under Random Initial Conditions [J]. Acta Armamentarii, 2023, 44(3): 718-727. | 
| [5] | DONG Jinlu, MA Yuemeng, ZHOU Di, GONG Xiaogang, ZHANG Xi, SONG Jiahong. A Composite Sliding Mode Control Scheme Based on Reaction Jets and Flaps for Near-Space Hypersonic Vehicles [J]. Acta Armamentarii, 2023, 44(2): 496-506. | 
| [6] | YOU Hao, CHANG Xinlong, ZHAO Jiufen, ZHANG Youhong, WANG Shunhong. Three-dimensional Leader-follower Cooperative Guidance Law with Impact Angle Constraints [J]. Acta Armamentarii, 2023, 44(11): 3369-3381. | 
| [7] | LI Dian-qi, DUAN Yong. Implementation of Active Disturbance Rejection Control of Robot by Tracking Differentiator [J]. Acta Armamentarii, 2016, 37(9): 1721-1729. | 
| [8] | ZENG Qing-han, MA Xiao-jun, LIAO Zi-li, WEI Shu-guang. Stable Steer Control of Electric Drive Tracked Vehicle Based on Equivalent Sliding Mode Technique with Conditional Integrator [J]. Acta Armamentarii, 2016, 37(8): 1351-1358. | 
| [9] | CHEN Chen, MA Guang-fu, SUN Yan-chao, LI Chuan-jiang. Recursive Sliding Mode Control for Hypersonic Vehicle Based on Nonlinear Disturbance Observer [J]. Acta Armamentarii, 2016, 37(5): 840-850. | 
| [10] | HUANG Da-shan, ZHANG Jin-qiu, LIU Yi-le, ZHANG Jian. Research on Sliding Mode Control and Energy Management Strategy of Energy-regenerative Suspension System of Vehicle [J]. Acta Armamentarii, 2016, 37(12): 2185-2195. | 
| [11] | YANG Jing, SHI Jin-guang, LI Xiao-yuan, WANG Zhong-yuan, CHANG Si-jiang. Integrated Autopilot Guidanceand Control Design Based on 2-order Sliding Mode for Extended Range Guided Projectiles [J]. Acta Armamentarii, 2016, 37(12): 2251-2258. | 
| [12] | LI Liang, LI Feng, FENG Yong-bao, YAO Xiao-guang. Research on Control Strategy of Large Hydraulic Erecting System Based on Adaptive Fuzzy Sliding Mode [J]. Acta Armamentarii, 2016, 37(1): 71-76. | 
| [13] | LI Wei, YANG Gang, CHEN Teng-fei, HAN Chong-wei. Research on Gun Pointing Control of a Full Closed-loop Aiming System [J]. Acta Armamentarii, 2015, 36(9): 1811-1818. | 
| [14] | YUAN Lei, LIU Wei-ping, LIU Xi-xia. Design of Sliding Mode Controller for All-wheel Steering System of Three-axle Vehicle [J]. Acta Armamentarii, 2015, 36(8): 1391-1397. | 
| [15] | ZHENG Ying, MA Da-wei, YAO Jian-yong, HU Jian. Linear Active Disturbance Rejection Control for Two-axis Coupling Position Servo System of Rocket Launcher [J]. Acta Armamentarii, 2015, 36(6): 987-993. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||