Acta Armamentarii ›› 2023, Vol. 44 ›› Issue (10): 2871-2884.doi: 10.12382/bgxb.2023.0281
Previous Articles Next Articles
YANG Lei1, LIU Han1,*(), HUANG Guangyan1,2, TIAN Xiangpeng1
Received:
2023-03-31
Online:
2023-10-30
Contact:
LIU Han
CLC Number:
YANG Lei, LIU Han, HUANG Guangyan, TIAN Xiangpeng. Protection Performance of Typical Explosion-proof Equipment Against TNT Blast Shock Wave[J]. Acta Armamentarii, 2023, 44(10): 2871-2884.
Add to citation manager EndNote|Ris|BibTeX
工况 | 防爆 结构 | TNT 当量/g | 防爆装备 性能参数 |
---|---|---|---|
1 | 750 | ||
2 | FAB | 1500 | 空爆,无防护 |
3 | 2250 | ||
4 | SEP | 750 | 防护材料:Q235钢 |
5 | 1500 | 规格:质量275kg,高度770mm,外径780mm | |
6 | 750 | 防护材料:聚氨酯泡沫、水和UHMWPE 规格:质量119kg,高度675mm,上径780mm,下径920mm | |
7 | FEP | 1500 | |
8 | 2250 | ||
9 | 3000 |
Table 1 Shock wave load protection test conditions
工况 | 防爆 结构 | TNT 当量/g | 防爆装备 性能参数 |
---|---|---|---|
1 | 750 | ||
2 | FAB | 1500 | 空爆,无防护 |
3 | 2250 | ||
4 | SEP | 750 | 防护材料:Q235钢 |
5 | 1500 | 规格:质量275kg,高度770mm,外径780mm | |
6 | 750 | 防护材料:聚氨酯泡沫、水和UHMWPE 规格:质量119kg,高度675mm,上径780mm,下径920mm | |
7 | FEP | 1500 | |
8 | 2250 | ||
9 | 3000 |
爆距/ m | 高度/ m | TNT 药量/ g | 超压 峰值/ kPa | 峰值 到达 时间/ms | 正压区 作用 时间/ms | 正压 冲量/ (Pa·s) |
---|---|---|---|---|---|---|
750 | 63.77 | 5.66 | 1.84 | 66.48 | ||
0.3 | 1500 | 104.75 | 5.02 | 2.61 | 97.64 | |
2250 | 119.61 | 4.28 | 1.76 | 128.83 | ||
750 | 49.11 | 6.13 | 2.94 | 51.34 | ||
4 | 1.3 | 1500 | 65.67 | 5.27 | 2.96 | 74.04 |
2250 | 104.64 | 4.78 | 2.79 | 113.32 | ||
750 | 51.92 | 6.13 | 2.85 | 54.46 | ||
1.6 | 1500 | 75.77 | 5.64 | 3.00 | 81.13 | |
2250 | 99.02 | 5.01 | 3.13 | 107.13 | ||
750 | 27.89 | 10.81 | 3.96 | 43.79 | ||
0.3 | 1500 | 44.76 | 9.50 | 4.16 | 66.05 | |
2250 | 49.31 | 8.77 | 4.34 | 86.92 | ||
750 | 37.71 | 10.84 | 3.37 | 51.33 | ||
6 | 1.3 | 1500 | 49.74 | 9.57 | 3.42 | 76.72 |
2250 | 48.17 | 9.00 | 4.38 | 83.70 | ||
750 | 31.18 | 11.03 | 3.65 | 45.49 | ||
1.6 | 1500 | 46.39 | 9.75 | 3.92 | 69.02 | |
2250 | 52.34 | 9.17 | 4.14 | 83.88 |
Table 2 Experimental results of shock wave peak overpressure during FAB
爆距/ m | 高度/ m | TNT 药量/ g | 超压 峰值/ kPa | 峰值 到达 时间/ms | 正压区 作用 时间/ms | 正压 冲量/ (Pa·s) |
---|---|---|---|---|---|---|
750 | 63.77 | 5.66 | 1.84 | 66.48 | ||
0.3 | 1500 | 104.75 | 5.02 | 2.61 | 97.64 | |
2250 | 119.61 | 4.28 | 1.76 | 128.83 | ||
750 | 49.11 | 6.13 | 2.94 | 51.34 | ||
4 | 1.3 | 1500 | 65.67 | 5.27 | 2.96 | 74.04 |
2250 | 104.64 | 4.78 | 2.79 | 113.32 | ||
750 | 51.92 | 6.13 | 2.85 | 54.46 | ||
1.6 | 1500 | 75.77 | 5.64 | 3.00 | 81.13 | |
2250 | 99.02 | 5.01 | 3.13 | 107.13 | ||
750 | 27.89 | 10.81 | 3.96 | 43.79 | ||
0.3 | 1500 | 44.76 | 9.50 | 4.16 | 66.05 | |
2250 | 49.31 | 8.77 | 4.34 | 86.92 | ||
750 | 37.71 | 10.84 | 3.37 | 51.33 | ||
6 | 1.3 | 1500 | 49.74 | 9.57 | 3.42 | 76.72 |
2250 | 48.17 | 9.00 | 4.38 | 83.70 | ||
750 | 31.18 | 11.03 | 3.65 | 45.49 | ||
1.6 | 1500 | 46.39 | 9.75 | 3.92 | 69.02 | |
2250 | 52.34 | 9.17 | 4.14 | 83.88 |
防护 类型 | 爆距/ m | 高度/ m | TNT 药量/ g | 峰值 超压/ kPa | 峰值超 压到达 时间/ms | 正压区 作用时 间/ms | 正压 冲量/ (Pa·s) | 防护 类型 | 爆距/ m | 高度/ m | TNT 药量/ g | 峰值 超压/ kPa | 峰值超 压到达 时间/ms | 正压区 作用时 间/ms | 正压 冲量/ (Pa·s) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SEP | 750 | 3.78 | 8.63 | 1.64 | 1.06 | FEP | 750 | — | 8.80 | 3.78 | 21.32 | |||||
0.3 | 1500 | 43.36 | 8.15 | 2.86 | 48.48 | 0.3 | 1500 | 30.39 | 8.36 | 2.78 | 30.49 | |||||
2250 | 2250 | 38.03 | 8.14 | 2.66 | 42.62 | |||||||||||
3000 | 3000 | 41.90 | 7.96 | 5.37 | 54.44 | |||||||||||
750 | 22.50 | 8.53 | 3.63 | 34.89 | 750 | 12.25 | 9.22 | 3.85 | 20.81 | |||||||
4 | 1.3 | 1500 | 33.25 | 7.82 | 3.73 | 46.07 | 4 | 1.3 | 1500 | 26.67 | 8.76 | 3.53 | 36.46 | |||
2250 | 2250 | 23.44 | 8.28 | 3.45 | 37.00 | |||||||||||
3000 | 3000 | 27.20 | 8.36 | 4.36 | 41.11 | |||||||||||
750 | 21.65 | 8.61 | 3.57 | 32.29 | 750 | 11.13 | 9.46 | 4.27 | 19.97 | |||||||
1.6 | 1500 | 32.35 | 7.86 | 4.05 | 43.72 | 1.6 | 1500 | 20.97 | 9.13 | 3.57 | 26.73 | |||||
2250 | 2250 | 22.08 | 8.42 | 3.50 | 34.40 | |||||||||||
3000 | 3000 | 29.27 | 8.59 | 4.75 | 44.84 | |||||||||||
750 | 16.75 | 13.78 | 3.82 | 27.00 | 750 | 9.91 | 14.08 | 4.34 | 15.08 | |||||||
0.3 | 1500 | 25.82 | 13.09 | 4.32 | 35.64 | 0.3 | 1500 | 15.64 | 13.56 | 3.97 | 19.25 | |||||
2250 | 2250 | 20.70 | 13.24 | 2.90 | 26.57 | |||||||||||
3000 | 3000 | 22.25 | 13.31 | 4.49 | 35.19 | |||||||||||
750 | 11.83 | 13.70 | 3.91 | 24.72 | 750 | 9.82 | 14.35 | 4.40 | 14.61 | |||||||
6 | 1.3 | 1500 | 17.59 | 12.90 | 3.77 | 35.66 | 6 | 1.3 | 1500 | 15.04 | 13.80 | 3.59 | 19.06 | |||
2250 | 2250 | 19.29 | 13.45 | 3.45 | 26.07 | |||||||||||
3000 | 3000 | 24.67 | 13.33 | 4.73 | 41.14 | |||||||||||
750 | 12.37 | 13.75 | 3.82 | 24.63 | 750 | 9.32 | 14.62 | 4.32 | 14.65 | |||||||
1.6 | 1500 | 18.56 | 12.92 | 3.83 | 35.82 | 1.6 | 1500 | 14.63 | 14.00 | 3.85 | 19.43 | |||||
2250 | 2250 | 17.43 | 13.66 | 3.68 | 25.60 | |||||||||||
3000 | 3000 | 21.06 | 13.53 | 4.68 | 37.38 |
Table 3 Experimental results of shock wave during SEP and FEP
防护 类型 | 爆距/ m | 高度/ m | TNT 药量/ g | 峰值 超压/ kPa | 峰值超 压到达 时间/ms | 正压区 作用时 间/ms | 正压 冲量/ (Pa·s) | 防护 类型 | 爆距/ m | 高度/ m | TNT 药量/ g | 峰值 超压/ kPa | 峰值超 压到达 时间/ms | 正压区 作用时 间/ms | 正压 冲量/ (Pa·s) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SEP | 750 | 3.78 | 8.63 | 1.64 | 1.06 | FEP | 750 | — | 8.80 | 3.78 | 21.32 | |||||
0.3 | 1500 | 43.36 | 8.15 | 2.86 | 48.48 | 0.3 | 1500 | 30.39 | 8.36 | 2.78 | 30.49 | |||||
2250 | 2250 | 38.03 | 8.14 | 2.66 | 42.62 | |||||||||||
3000 | 3000 | 41.90 | 7.96 | 5.37 | 54.44 | |||||||||||
750 | 22.50 | 8.53 | 3.63 | 34.89 | 750 | 12.25 | 9.22 | 3.85 | 20.81 | |||||||
4 | 1.3 | 1500 | 33.25 | 7.82 | 3.73 | 46.07 | 4 | 1.3 | 1500 | 26.67 | 8.76 | 3.53 | 36.46 | |||
2250 | 2250 | 23.44 | 8.28 | 3.45 | 37.00 | |||||||||||
3000 | 3000 | 27.20 | 8.36 | 4.36 | 41.11 | |||||||||||
750 | 21.65 | 8.61 | 3.57 | 32.29 | 750 | 11.13 | 9.46 | 4.27 | 19.97 | |||||||
1.6 | 1500 | 32.35 | 7.86 | 4.05 | 43.72 | 1.6 | 1500 | 20.97 | 9.13 | 3.57 | 26.73 | |||||
2250 | 2250 | 22.08 | 8.42 | 3.50 | 34.40 | |||||||||||
3000 | 3000 | 29.27 | 8.59 | 4.75 | 44.84 | |||||||||||
750 | 16.75 | 13.78 | 3.82 | 27.00 | 750 | 9.91 | 14.08 | 4.34 | 15.08 | |||||||
0.3 | 1500 | 25.82 | 13.09 | 4.32 | 35.64 | 0.3 | 1500 | 15.64 | 13.56 | 3.97 | 19.25 | |||||
2250 | 2250 | 20.70 | 13.24 | 2.90 | 26.57 | |||||||||||
3000 | 3000 | 22.25 | 13.31 | 4.49 | 35.19 | |||||||||||
750 | 11.83 | 13.70 | 3.91 | 24.72 | 750 | 9.82 | 14.35 | 4.40 | 14.61 | |||||||
6 | 1.3 | 1500 | 17.59 | 12.90 | 3.77 | 35.66 | 6 | 1.3 | 1500 | 15.04 | 13.80 | 3.59 | 19.06 | |||
2250 | 2250 | 19.29 | 13.45 | 3.45 | 26.07 | |||||||||||
3000 | 3000 | 24.67 | 13.33 | 4.73 | 41.14 | |||||||||||
750 | 12.37 | 13.75 | 3.82 | 24.63 | 750 | 9.32 | 14.62 | 4.32 | 14.65 | |||||||
1.6 | 1500 | 18.56 | 12.92 | 3.83 | 35.82 | 1.6 | 1500 | 14.63 | 14.00 | 3.85 | 19.43 | |||||
2250 | 2250 | 17.43 | 13.66 | 3.68 | 25.60 | |||||||||||
3000 | 3000 | 21.06 | 13.53 | 4.68 | 37.38 |
参数 | 数值 |
---|---|
屈服强度A/MPa | 249.2 |
应变强化系数B/MPa | 889 |
应变率敏感系数C | 0.058 |
材料硬化指数n | 0.746 |
温度软化参数m | 0.94 |
Table 4 Parameters of J-C constitutive model for Q235 steel
参数 | 数值 |
---|---|
屈服强度A/MPa | 249.2 |
应变强化系数B/MPa | 889 |
应变率敏感系数C | 0.058 |
材料硬化指数n | 0.746 |
温度软化参数m | 0.94 |
参数 | 数值 |
---|---|
密度ρw/(g·cm-3) | 1.0 |
多项式常数A1/kPa | 2.2×106 |
多项式常数A2/kPa | 9.54×106 |
多项式常数A3/kPa | 1.457×107 |
多项式常数B0 | 0 |
多项式常数B1 | 0.28 |
多项式常数T1/kPa | 2.2×106 |
多项式常数T2/kPa | 0 |
单位质量内能ew/(J·kg-1) | 362 |
Table 5 Polynomial equation of state parameters of water material
参数 | 数值 |
---|---|
密度ρw/(g·cm-3) | 1.0 |
多项式常数A1/kPa | 2.2×106 |
多项式常数A2/kPa | 9.54×106 |
多项式常数A3/kPa | 1.457×107 |
多项式常数B0 | 0 |
多项式常数B1 | 0.28 |
多项式常数T1/kPa | 2.2×106 |
多项式常数T2/kPa | 0 |
单位质量内能ew/(J·kg-1) | 362 |
参数 | 数值 |
---|---|
密度ρw/(g·cm-3) | 0.98 |
11方向杨氏模量E11/kPa | 3.62×106 |
22方向杨氏模量E22/kPa | 2.69×107 |
33方向杨氏模量E33/kPa | 2.69×107 |
12方向泊松比ν12 | 1.3×10-2 |
23方向泊松比ν23 | 0 |
31方向泊松比ν31 | 0.5 |
12方向剪切模量G12/kPa | 3.07×104 |
23方向剪切模量G23/kPa | 4.23×104 |
31方向剪切模量G31/kPa | 3.07×104 |
11方向上拉伸失效应力σ11fail/kPa | 1.07×103 |
22方向上拉伸失效应力σ22fail/kPa | 7.53×105 |
33方向上拉伸失效应力σ33fail/kPa | 7.53×105 |
12方向最大切应力τ12fail/kPa | 1.01×1023 |
23方向最大切应力τ23fail/kPa | 3.52×104 |
31方向最大切应力τ31fail/kPa | 1.01×1023 |
Table 6 Main parameters of UHMWPE fiber target material
参数 | 数值 |
---|---|
密度ρw/(g·cm-3) | 0.98 |
11方向杨氏模量E11/kPa | 3.62×106 |
22方向杨氏模量E22/kPa | 2.69×107 |
33方向杨氏模量E33/kPa | 2.69×107 |
12方向泊松比ν12 | 1.3×10-2 |
23方向泊松比ν23 | 0 |
31方向泊松比ν31 | 0.5 |
12方向剪切模量G12/kPa | 3.07×104 |
23方向剪切模量G23/kPa | 4.23×104 |
31方向剪切模量G31/kPa | 3.07×104 |
11方向上拉伸失效应力σ11fail/kPa | 1.07×103 |
22方向上拉伸失效应力σ22fail/kPa | 7.53×105 |
33方向上拉伸失效应力σ33fail/kPa | 7.53×105 |
12方向最大切应力τ12fail/kPa | 1.01×1023 |
23方向最大切应力τ23fail/kPa | 3.52×104 |
31方向最大切应力τ31fail/kPa | 1.01×1023 |
密度/ (g·cm-3) | 封闭 孔隙 度/% | 杨氏 模量/ kPa | 平台 应力/ kPa | 泊松 比 | 实化 应变 | 断裂应变 (伸长)/ % |
---|---|---|---|---|---|---|
0.2 | 70.2 | 7.28×104 | 2.1×103 | 0.13 | 0.58 | 2.17 |
Table 7 Main material parameters of polyurethane foam[8]
密度/ (g·cm-3) | 封闭 孔隙 度/% | 杨氏 模量/ kPa | 平台 应力/ kPa | 泊松 比 | 实化 应变 | 断裂应变 (伸长)/ % |
---|---|---|---|---|---|---|
0.2 | 70.2 | 7.28×104 | 2.1×103 | 0.13 | 0.58 | 2.17 |
防护类型 | 爆距/m | 高度/m | 峰值超压/kPa | 峰值超压到达时间/ms | ||||
---|---|---|---|---|---|---|---|---|
试验值 | 模拟值 | 误差/% | 试验值 | 模拟值 | 误差/% | |||
0.3 | 43.36 | 46.82 | 8.0 | 8.15 | 8.34 | 2.3 | ||
4 | 1.3 | 33.25 | 33.68 | 1.3 | 7.82 | 7.00 | -10.5 | |
SEP | 1.6 | 32.35 | 35.64 | 10.2 | 7.86 | 6.89 | -12.3 | |
0.3 | 25.82 | 25.8 | -0.1 | 13.09 | 12.92 | -1.3 | ||
6 | 1.3 | 17.59 | 18.18 | 3.4 | 12.9 | 12.18 | -5.6 | |
1.6 | 18.56 | 18.81 | 1.3 | 12.92 | 12.09 | -6.4 | ||
0.3 | 30.39 | 25.96 | -14.6 | 8.36 | 7.08 | -15.3 | ||
4 | 1.3 | 26.67 | 27.33 | 2.5 | 8.76 | 7.69 | -12.2 | |
FEP | 1.6 | 20.97 | 26.15 | 24.7 | 9.13 | 7.99 | -12.5 | |
0.3 | 15.64 | 17.63 | 12.7 | 13.56 | 12.24 | -9.7 | ||
6 | 1.3 | 15.04 | 17.45 | 16.0 | 13.80 | 12.66 | -8.3 | |
1.6 | 14.63 | 16.64 | 13.7 | 14.00 | 12.86 | -8.1 |
Table 9 Comparison of test and numerically simulated results of 1500g TNT shock wave with SEP and FEP
防护类型 | 爆距/m | 高度/m | 峰值超压/kPa | 峰值超压到达时间/ms | ||||
---|---|---|---|---|---|---|---|---|
试验值 | 模拟值 | 误差/% | 试验值 | 模拟值 | 误差/% | |||
0.3 | 43.36 | 46.82 | 8.0 | 8.15 | 8.34 | 2.3 | ||
4 | 1.3 | 33.25 | 33.68 | 1.3 | 7.82 | 7.00 | -10.5 | |
SEP | 1.6 | 32.35 | 35.64 | 10.2 | 7.86 | 6.89 | -12.3 | |
0.3 | 25.82 | 25.8 | -0.1 | 13.09 | 12.92 | -1.3 | ||
6 | 1.3 | 17.59 | 18.18 | 3.4 | 12.9 | 12.18 | -5.6 | |
1.6 | 18.56 | 18.81 | 1.3 | 12.92 | 12.09 | -6.4 | ||
0.3 | 30.39 | 25.96 | -14.6 | 8.36 | 7.08 | -15.3 | ||
4 | 1.3 | 26.67 | 27.33 | 2.5 | 8.76 | 7.69 | -12.2 | |
FEP | 1.6 | 20.97 | 26.15 | 24.7 | 9.13 | 7.99 | -12.5 | |
0.3 | 15.64 | 17.63 | 12.7 | 13.56 | 12.24 | -9.7 | ||
6 | 1.3 | 15.04 | 17.45 | 16.0 | 13.80 | 12.66 | -8.3 | |
1.6 | 14.63 | 16.64 | 13.7 | 14.00 | 12.86 | -8.1 |
Fig.11 Curves of relation between arrival time of shock wave overpressure peak and TNT equivalent at 1.3m height under different protection conditions
[1] |
The national consortium for the study of terrorism and responses to terrorism (START), global terrorism database[DB/OL]. (2022-05) [2022-12-28]. https://www.start.umd.edu/gtd/contact/download/.
|
[2] |
北京工业学院八系编写组. 爆炸及其作用[M]. 北京: 国防工业出版社, 1979.
|
The eighth Department of Beijing Institute of Technology. Explosion and its effect[M]. Beijing: National Defense Industry Press, 1979. (in Chinese)
|
|
[3] |
宇德明, 冯长根, 徐志胜, 等. 炸药爆炸事故冲击波、热辐射和房屋倒塌的伤害效应[J]. 兵工学报, 1998, 19(1): 33-37.
|
|
|
[4] |
伍杨, 覃彬, 王舒, 等. 基于爆炸冲击波的头盔防护性能[J]. 兵工学报, 2022, 43(9): 2121-2128.
|
doi: 10.12382/bgxb.2022.0553 |
|
[5] |
康越, 张仕忠, 张远平, 等. 基于激波管评价的单兵头面部装备冲击波防护性能研究[J]. 爆炸与冲击, 2021, 41(8): 179-191.
|
|
|
[6] |
熊漫漫, 覃彬, 徐诚, 等. 冲击波作用有/无防护颅脑靶标动态响应规律[J]. 兵工学报, 2022, 43(9): 2182-2189.
|
doi: 10.12382/bgxb.2022.0483 |
|
[7] |
doi: 10.1016/j.engstruct.2018.06.062 URL |
[8] |
doi: 10.1016/j.compstruct.2021.115016 URL |
[9] |
doi: 10.1016/j.ijimpeng.2015.03.003 URL |
[10] |
陈鹏宇, 侯海量, 刘贵兵, 等. 水雾对舱内装药爆炸载荷的耗散效能试验研究[J]. 兵工学报, 2018, 39(5): 927-933.
doi: 10.3969/j.issn.1000-1093.2018.05.012 |
|
|
[11] |
王成, 杨靖宇, 迟力源, 等. 钢筋混凝土端面重墙结构的抗爆性能规律[J]. 兵工学报, 2022, 43(1): 131-139.
doi: 10.3969/j.issn.1000-1093.2022.01.014 |
doi: 10.3969/j.issn.1000-1093.2022.01.014 |
|
[12] |
doi: 10.1016/j.jlp.2020.104234 URL |
[13] |
刘春美, 黄广炎, 由军, 等. 复合柔性结构防爆试验方法与判据研究[J]. 兵工学报, 2016, 37(增刊1): 96-100.
|
|
|
[14] |
年鑫哲, 张耀, 孙传怀, 等. 空气冲击波作用于柔性防爆墙的透射和绕射效应分析[J]. 工程力学, 2015, 32(3): 241-248, 256.
|
|
|
[15] |
防爆罐: GA 871—2010[S]. 北京: 中华人民共和国公安部, 2010.
|
Bomb blast suppression bin: GA 871—2010[S]. Beijing: The Ministry of Public Security of the People’s Republic of China, 2010. (in Chinese)
|
|
[16] |
防爆容器通用技术要求: T/COS 004—2019[S]. 北京: 中国兵工学会, 2019.
|
The technical requirements for explosion containement vessels: T/COS 004—2019[S]. Beijing: China Ordnance Engineering Society, 2019. (in Chinese)
|
|
[17] |
柔性防爆桶: Q/BIT RXFB-1500-D1—2021[S]. 北京: 北京理工大学, 2021.
|
Soft explosion suppression barrel: Q/BIT RXFB-1500-D1—2021[S]. Beijing: Beijing Institute of Technology, 2021. (in Chinese)
|
|
[18] |
|
[19] |
|
[20] |
孔祥韶. 爆炸载荷及复合多层防护结构响应特性研究[D]. 武汉: 武汉理工大学, 2013.
|
|
|
[21] |
|
[22] |
|
[23] |
|
[24] |
doi: 10.1016/j.ijimpeng.2014.07.004 URL |
[25] |
doi: 10.1016/j.compositesa.2016.01.014 URL |
[26] |
doi: 10.1177/002199839703100803 URL |
[27] |
doi: 10.1016/j.actamat.2004.10.024 URL |
[28] |
doi: 10.1016/j.compstruct.2019.111081 URL |
[29] |
刘瀚, 赵耀, 郭志威, 等. 防爆装备对TNT炸药爆炸强噪声的防护性能[J]. 兵工学报, 2022, 43(9): 2058-2074.
|
doi: 10.12382/bgxb.2022.0064 |
|
[30] |
隋树元, 王树山. 终点效应学[M]. 北京: 国防工业出版社, 2000.
|
|
[1] | ZHANG Yulei, CHEN Hua, YUAN Jianfei, JI Jianrong, FENG Xiaojun, LIU Yan. Non-even Distribution Characteristics of Explosion Shock Wave Overpressure and Optimal Number of Measuring Points [J]. Acta Armamentarii, 2024, 45(3): 744-753. |
[2] | ZHOU Yuelan, PEI Lu, LONG Renrong, ZHANG Qingming, LIU Bowen, REN Jiankang. Study on the Evolution Characteristics of Pressure Pulse in Shock Tube and a Method of Simulating Air Explosion Shock Wave [J]. Acta Armamentarii, 2023, 44(12): 3815-3825. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||