[1] BEKMEZCI I, SEN I, ERKALKAN E, et al. Flying ad hoc networks (FANETS) test bed implementation [C] ∥Proceeding of the 7th International Conference on Recent Advances in Space Technologies. Istanbul, Turkey: IEEE, 2015: 665-668. [2] KERRACHE C A, BARKA B, LAGRAA N et al. Reputation-aware energy-efficient solution for FANET monitoring[C]∥Proceeding of the 10th IFIP Wireless and Mobile Networking Conference. Valencia, Spain: IEEE, 2017. [3] BEKMEZCI I, SAHINGOZ O K, TEMEL S. Flying ad hoc networks (FANETs): a survey [J]. Ad Hoc Networks, 2013, 11(3): 1254-1270. [4] OZGUR K S. Networking models in flying ad-hoc network evaluation: concepts and challenges [J]. Journal of Intelligent & Robotic Systems, 2014, 74(1/2): 513-527. [5] KULDEEP S, ANIL K V. Threat modeling for multi-UAV ad hoc networks[C]∥Proceedings of 2017 IEEE Region 10 Conference. Penang, Malaysia: IEEE, 2017: 1544-1549. [6] HERDER J C. STEVENS J A. Method and architecture for TTNT symbol rate scaling modes: US7839900BI [P]. 2010-11-23. [7] CAO S B, VICTOR C S L. A novel adaptive TDMA-based MAC protocol for VANETs [J]. IEEE Communications Letters, 2018, 22(3): 614-617. [8] 吕娜, 陈柯帆. 面向航空集群云网络的航空数据链MAC协议[J]. 系统工程与电子技术, 2016, 38(5): 1164-1175. L N, CHEN K F. Aeronautic swarm cloud network oriented MAC protocol for aviation data link [J]. System Engineering and Electronics, 2016, 38(5): 1164-1175.(in Chinese)
[9] ZHANG X M. New method for analyzing nonsaturated IEEE 802.11 DCF networks [J]. IEEE Wireless Communications Letters, 2013, 2(2): 243-246.
[10] CAI Y, YU F R, LI J, et al. Medium access control for unmanned aerial vehicle (UAV) ad-hoc networks with full-duplex radios and multipacket reception capability[J]. IEEE Transactions on Vehicular Technology, 2013, 62(1):390-394. [11] WAQAS T, T, JUN-BAE S, HU J. Distributed transmission control in multichannel S-ALOHA for ad-hoc networks [J]. IEEE Communications Letters, 2017, 21(9): 2093-2096. [12] GIANLUIGI L. Graph-based analysis and optimization of contention resolution diversity slotted ALOHA[J]. IEEE Transactions on Communications, 2011, 59(2): 477-487. [13] STEPHEN M C, KELLI A H, SCOTT J F Z. Statistical priority-based multiple access system and method: US7680077BI [P]. 2010-03-16. [14] 高晓琳, 韩丰, 晏坚, 等. 一种支持QoS的航空自组织网络无反馈MAC协议建模[J]. 北京航空航天大学学报, 2016, 42(6): 1169-1175. GAO X L, HAN F, YAN J, et al. Model providing QoS guarantee for feedback-free MAC in aeronautical ad hoc networks[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(6): 1169-1175.(in Chinese) [15] 肖雷蕾, 张衡阳, 毛玉泉, 等. 一种区分优先级自适应抖动的媒质接入控制协议[J]. 西安交通大学学报, 2015, 49(10): 123-129. XIAO L L, ZHANG H Y, MAO Y Q, et al. An adaptive jitter based media access control protocol with priorities[J]. Journal of Xi'an Jiaotong University, 2015, 49(10): 123-129.(in Chinese) [16] FANG Z, QIU Q M, DING Y F, et al. A QoS guarantee based hybrid media access control protocol of aeronautical ad hoc network[J]. IEEE Access, 2018 (6): 5954-5961. [17] 赵玮, 郑博, 张衡阳, 等. 基于RS-Polar编码的机载战术网络MAC协议[J]. 计算机工程, 2017, 43(12): 83-87. ZHAO W, ZHENG B, ZHANG H Y, et al. MAC protocol based on RS-polar coding for airborne tactical network [J]. Computer Engineering, 2017,43(12): 83-87.
[18] 王叶群, 黄国策, 张衡阳, 等. 一种支持实时性业务的多信道MAC协议[J]. 计算机应用研究, 2012, 29(8): 3098-3102. WANG Y Q, HUANG G C, ZHANG H Y, et al. Multi-channel media access control protocol for real-time traffic [J]. Application Research of Computers, 2012, 29(8): 3098-3102. (in Chinese) [19] 陆传赉. 排队论[M]. 北京: 北京邮电大学出版社, 1994. LU C L.Queuing theory[M]. Beijing:Beijing University of Posts and Telecommunications Press,1994.(in Chinese)
第40卷 第4期2019 年4月兵工学报ACTA ARMAMENTARIIVol.40No.4Apr.2019
|