Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (8): 240912-.doi: 10.12382/bgxb.2024.0912
Previous Articles Next Articles
TAO Weihao1, LUO Yasong1,*(), LIN Fajun2,**(
), QU Jianjing3, LIU Yiping1
Received:
2024-09-29
Online:
2025-08-28
Contact:
LUO Yasong, LIN Fajun
CLC Number:
TAO Weihao, LUO Yasong, LIN Fajun, QU Jianjing, LIU Yiping. Marine Ship Target Segmentation Method Based on Improved DeepLabV3+[J]. Acta Armamentarii, 2025, 46(8): 240912-.
Add to citation manager EndNote|Ris|BibTeX
层名称 | 输出尺寸 (B×M×H×W) | 卷积核参数 (S/δ/P/D) |
---|---|---|
MobileNetV2 | B×320×32×32 | … |
1×1卷积+ECA-Net | B×256×32×32 | S=1×1/δ=1/P=0/D=1 |
3×3卷积+ECA-Net | B×256×32×32 | S=3×3/δ=1/P=6/D=6 |
3×3卷积+ECA-Net | B×256×32×32 | S=1×1/δ=1/P=12/D=12 |
3×3卷积+ECA-Net | B×256×32×32 | S=1×1/δ=1/P=18/D=18 |
全局平均池化+ECA-Net | B×256×1×1 | |
1×1卷积 | B×256×32×32 | S=1×1/δ=1/P=0/D=1 |
低层特征1×1卷积 | B×48×128×128 | S=1×1/δ=1/P=0/D=1 |
4倍线性上采样 | B×256×128×128 | |
特征融合 | B×304×128×128 | |
3×3卷积 | B×256×128×128 | S=3×3/δ=1/P=0/D=1 |
4倍最终线性上采样 | B×2×512×512 |
Table 1 Parameters of network layer
层名称 | 输出尺寸 (B×M×H×W) | 卷积核参数 (S/δ/P/D) |
---|---|---|
MobileNetV2 | B×320×32×32 | … |
1×1卷积+ECA-Net | B×256×32×32 | S=1×1/δ=1/P=0/D=1 |
3×3卷积+ECA-Net | B×256×32×32 | S=3×3/δ=1/P=6/D=6 |
3×3卷积+ECA-Net | B×256×32×32 | S=1×1/δ=1/P=12/D=12 |
3×3卷积+ECA-Net | B×256×32×32 | S=1×1/δ=1/P=18/D=18 |
全局平均池化+ECA-Net | B×256×1×1 | |
1×1卷积 | B×256×32×32 | S=1×1/δ=1/P=0/D=1 |
低层特征1×1卷积 | B×48×128×128 | S=1×1/δ=1/P=0/D=1 |
4倍线性上采样 | B×256×128×128 | |
特征融合 | B×304×128×128 | |
3×3卷积 | B×256×128×128 | S=3×3/δ=1/P=0/D=1 |
4倍最终线性上采样 | B×2×512×512 |
Input | Operator | d | c | z | s |
---|---|---|---|---|---|
224×224×3 | conv2d | 32 | 1 | 2 | |
112×112×32 | bottleneck | 1 | 16 | 1 | 1 |
112×112×16 | bottleneck | 6 | 24 | 2 | 2 |
56×56×24 | bottleneck | 6 | 32 | 3 | 2 |
28×28×32 | bottleneck | 6 | 64 | 4 | 2 |
14×14×64 | bottleneck | 6 | 96 | 3 | 1 |
14×14×96 | bottleneck | 6 | 160 | 3 | 2 |
7×7×160 | bottleneck | 6 | 320 | 1 | 1 |
7×7×320 | conv2d 1×1 | 1280 | 1 | 1 | |
7×7×1280 | avgpool 7×7 | 1 | |||
1×1×v | conv2d 1×1 | v |
Table 2 MobileNetV2 network structure
Input | Operator | d | c | z | s |
---|---|---|---|---|---|
224×224×3 | conv2d | 32 | 1 | 2 | |
112×112×32 | bottleneck | 1 | 16 | 1 | 1 |
112×112×16 | bottleneck | 6 | 24 | 2 | 2 |
56×56×24 | bottleneck | 6 | 32 | 3 | 2 |
28×28×32 | bottleneck | 6 | 64 | 4 | 2 |
14×14×64 | bottleneck | 6 | 96 | 3 | 1 |
14×14×96 | bottleneck | 6 | 160 | 3 | 2 |
7×7×160 | bottleneck | 6 | 320 | 1 | 1 |
7×7×320 | conv2d 1×1 | 1280 | 1 | 1 | |
7×7×1280 | avgpool 7×7 | 1 | |||
1×1×v | conv2d 1×1 | v |
项目 | 配置参数 |
---|---|
操作系统 | Windows 11 64bit |
处理器 | IntelⓇ CoreTM i9-14900KF@3.2GHz |
显卡 | NVIDIA GeForce RTX 4090 24GB |
运行内存 | DDR5 64G 6400MHz |
开发语言 | Python 3.9 |
深度学习框架 | Pytorch 1.12.0 |
CUDA版本 | 12.8 |
Table 3 Experimental environment
项目 | 配置参数 |
---|---|
操作系统 | Windows 11 64bit |
处理器 | IntelⓇ CoreTM i9-14900KF@3.2GHz |
显卡 | NVIDIA GeForce RTX 4090 24GB |
运行内存 | DDR5 64G 6400MHz |
开发语言 | Python 3.9 |
深度学习框架 | Pytorch 1.12.0 |
CUDA版本 | 12.8 |
实验 | 预训练数据集 | MIoU/% | MPA/% |
---|---|---|---|
1 | VOC2012 | 90.21 | 91.94 |
2 | ImageNet | 90.42 | 92.65 |
3 | COCO2017 | 91.07 | 92.35 |
4 | SeaShips | 91.62 | 92.87 |
Table 4 Performance comparison of different pretrained datasets
实验 | 预训练数据集 | MIoU/% | MPA/% |
---|---|---|---|
1 | VOC2012 | 90.21 | 91.94 |
2 | ImageNet | 90.42 | 92.65 |
3 | COCO2017 | 91.07 | 92.35 |
4 | SeaShips | 91.62 | 92.87 |
实验 | 模型 | 预处理 | MIoU/% | MPA/% |
---|---|---|---|---|
1 | MET-DeepLabV3+ | 85.31 | 87.83 | |
2 | √ | 88.40 | 90.64 |
Table 5 Comparison of model performances with and without preprocessing
实验 | 模型 | 预处理 | MIoU/% | MPA/% |
---|---|---|---|---|
1 | MET-DeepLabV3+ | 85.31 | 87.83 | |
2 | √ | 88.40 | 90.64 |
实验 | 主干网络 | MIoU/% | 参数量/MB |
---|---|---|---|
1 | SwinTransformer | 90.26 | 93.45 |
2 | Xception | 89.49 | 76.12 |
3 | ResNet-50 | 89.73 | 44.57 |
4 | VGG-16 | 86.88 | 138.29 |
5 | MobileNetV2 | 88.65 | 6.46 |
Table 6 Performance comparison of different backbone networks
实验 | 主干网络 | MIoU/% | 参数量/MB |
---|---|---|---|
1 | SwinTransformer | 90.26 | 93.45 |
2 | Xception | 89.49 | 76.12 |
3 | ResNet-50 | 89.73 | 44.57 |
4 | VGG-16 | 86.88 | 138.29 |
5 | MobileNetV2 | 88.65 | 6.46 |
实验 | 主干网络 | 注意力机制 | MIoU/% | MPA/% |
---|---|---|---|---|
1 | MobileNetV2 | ECA-Net | 89.54 | 91.66 |
2 | MobileNetV2 | SE-Net | 88.95 | 90.52 |
3 | MobileNetV2 | CBAM | 89.13 | 91.85 |
4 | MobileNetV2 | Non-local | 89.02 | 90.37 |
Table 7 Performance comparison of different attention mechanisms
实验 | 主干网络 | 注意力机制 | MIoU/% | MPA/% |
---|---|---|---|---|
1 | MobileNetV2 | ECA-Net | 89.54 | 91.66 |
2 | MobileNetV2 | SE-Net | 88.95 | 90.52 |
3 | MobileNetV2 | CBAM | 89.13 | 91.85 |
4 | MobileNetV2 | Non-local | 89.02 | 90.37 |
实验 | MobileNetV2 | ECA-Net | 迁移学习 | MIoU/% | MPA/% |
---|---|---|---|---|---|
1 | √ | 88.65 | 90.23 | ||
2 | √ | √ | 89.54 | 91.66 | |
3 | √ | √ | √ | 91.62 | 92.87 |
Table 8 Ablation experimental results of different modules
实验 | MobileNetV2 | ECA-Net | 迁移学习 | MIoU/% | MPA/% |
---|---|---|---|---|---|
1 | √ | 88.65 | 90.23 | ||
2 | √ | √ | 89.54 | 91.66 | |
3 | √ | √ | √ | 91.62 | 92.87 |
实验 | 模型 | 主干网络 | MIoU/% | MPA/% |
---|---|---|---|---|
1 | HRNet | VGG-16 | 90.37 | 91.48 |
2 | PSPNet | ResNet-50 | 89.13 | 91.25 |
3 | UNet | VGG-16 | 90.06 | 92.59 |
4 | DeepLabV3+ | Xception | 89.49 | 91.76 |
5 | CGRSeg | EfficientFormerV2 | 89.75 | 91.20 |
6 | SED | ConvNeXt-B | 88.93 | 90.85 |
7 | MET-DeepLabV3+ | MobileNetV2 | 91.62 | 92.87 |
Table 9 Performance comparison results of different models
实验 | 模型 | 主干网络 | MIoU/% | MPA/% |
---|---|---|---|---|
1 | HRNet | VGG-16 | 90.37 | 91.48 |
2 | PSPNet | ResNet-50 | 89.13 | 91.25 |
3 | UNet | VGG-16 | 90.06 | 92.59 |
4 | DeepLabV3+ | Xception | 89.49 | 91.76 |
5 | CGRSeg | EfficientFormerV2 | 89.75 | 91.20 |
6 | SED | ConvNeXt-B | 88.93 | 90.85 |
7 | MET-DeepLabV3+ | MobileNetV2 | 91.62 | 92.87 |
[14] |
|
[15] |
郭开武. 基于空间特征相关的图像去噪及分割算法研究[D]. 西安: 西安电子科技大学, 2014.
|
|
|
[16] |
钱康亮. 基于图像局部滤波去噪增强算法的图像语义分割模型[J]. 机械设计与制造工程, 2023, 52(10):109-113.
|
|
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
刘文祥, 舒远仲, 唐小敏, 等. 采用双注意力机制DeepLabv3+算法的遥感影像语义分割[J]. 热带地理, 2020, 40(2):303-313.
doi: 10.13284/j.cnki.rddl.003229 |
|
|
[23] |
|
[24] |
|
[25] |
陈昌川, 郝晓严, 龙虹毓, 等. 基于改进DeepLabv3+网络的沥青道路裂缝检测方法[J]. 半导体光电, 2024, 45(3):493-500.
|
|
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
doi: 10.1038/s41598-024-60375-1 pmid: 38678060 |
[31] |
|
[1] |
余扬. 基于二维Otsu的舰船目标图像分割方法[J]. 舰船电子工程, 2022, 42(1):36-39.
|
|
|
[2] |
薛丽霞, 孙伟, 汪荣贵, 等. 基于边缘概率的层次交互式图像分割算法[J]. 合肥工业大学学报(自然科学版), 2020, 43(3):342-348.
|
|
|
[3] |
何翠萍. 应用区域生长的无人船红外图像精确分割方法[J]. 信息与电脑(理论版), 2022, 34(24):81-83.
|
|
|
[4] |
黄泽贤, 吴凡路, 傅瑶, 等. 基于深度学习的遥感图像舰船目标检测算法综述[J]. 光学精密工程, 2023, 31(15):2295-2318.
|
|
|
[5] |
doi: 10.1109/TPAMI.2010.161 pmid: 20733228 |
[6] |
吕亚飞, 石敏, 江志浩, 等. 基于图像分割的海上舰船目标智能感知算法[J] 舰船科学技术, 2022, 44(24):91-95.
|
|
|
[7] |
李琦, 王树良, 党迎旭, 等. 基于聚类分析的战场重要目标识别方法[C]// 第十届中国指挥控制大会论文集(上册). 北京: 中国指挥与控制学会, 2022:472-478.
|
|
|
[8] |
|
[9] |
|
[10] |
夏平, 任强, 吴涛, 等. 融合多尺度统计信息模糊C均值聚类与Markov随机场的小波域声纳图像分割[J]. 兵工学报, 2017, 38(5):940-948.
doi: 10.3969/j.issn.1000-1093.2017.05.014 |
doi: 10.3969/j.issn.1000-1093.2017.05.014 |
|
[11] |
陈松生. 基于模糊聚类的非监督学习研究[D]. 南京: 南京师范大学, 2007.
|
|
|
[12] |
|
[13] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
赵为平, 陈雨, 项松, 等. 基于改进的DeepLabv3+图像语义分割算法研究[J]. 系统仿真学报, 2023, 35(11):2333-2344.
doi: 10.16182/j.issn1004731x.joss.22-0690 |
|
|
[38] |
|
[39] |
|
[1] | LIU Hui, LI Mingyi, HAN Lijin, LIU Baoshuai. Research on Infrared Target Detection and Tracking in Dark Environments [J]. Acta Armamentarii, 2025, 46(8): 240081-. |
[2] | DONG Yi, KONG Xiaofang, LUO Hong’e, WAN Gang, XIA Yan, WAN Minjie. Lightweight Transmedia High-speed Small Target Detection Method Based on Coordinate Attention Mechanism [J]. Acta Armamentarii, 2025, 46(6): 240380-. |
[3] | LI Yangjun, HUANG Qilong, YANG Li, CHEN Xu. Combat Intention Recognition of Air Cluster Targets Driven by Data and Knowledge [J]. Acta Armamentarii, 2025, 46(2): 240113-. |
[4] | CUI Suxiao, WU Zhe, CUI Yanping, ZHANG Qiang, ZHAO Yuejing. Fault Diagnosis of Planetary Gearbox Based on Frequency Slice Wavelet Transform and Attention-enhanced ConvNeXt Model [J]. Acta Armamentarii, 2025, 46(2): 240329-. |
[5] | FENG Yingbin, GUO Xiaozun, YAN Jiahua. Small UVA Target Detection Algorithm Based on Multi-scale Attention Mechanism [J]. Acta Armamentarii, 2025, 46(1): 231124-. |
[6] | SUN Xichen, LI Weibing, HUANG Changwei, FU Jiawei, FENG Jun. Multi-step-ahead Prediction of Grenade Trajectory Based on CNN-LSTM Enhanced by Deep Learning and Self-attention Mechanism [J]. Acta Armamentarii, 2024, 45(S1): 51-59. |
[7] | YANG Huanyu, WANG Jun, WU Xiang, BO Yuming, MA Lifeng, LU Jinlei. A Method for Military Aircraft Recognition Using a Coordinate Attention-based Deep Learning Network [J]. Acta Armamentarii, 2024, 45(7): 2128-2143. |
[8] | JI Wen, LI Chunna, JIA Xuyi, WANG Gang, GONG Chunlin. A High-spinning Projectile Aerodynamic Modeling Method Combining System Identification and Transfer Learning [J]. Acta Armamentarii, 2024, 45(7): 2197-2208. |
[9] | LUO Haowen, HE Shaoming, KANG Youwei. A Multitask Guidance Algorithm Based on Transfer Learning [J]. Acta Armamentarii, 2024, 45(6): 1787-1798. |
[10] | LIU Peng, XIONG Zeyu, JING Wenbo, FENG Xuan, ZHANG Junhao, LIU Tongbo, WU Xueni, XIA Xuan, WAN Linlin, ZHAO Haili. Degrad Target Detection Algorithm [J]. Acta Armamentarii, 2024, 45(6): 2065-2075. |
[11] | WU Lingxiao, KANG Jiayin, JI Yunxiang, MA Hanyan. Infrared and Visible Image Fusion Using Dual-stream Generative Adversarial Network with Multiple Discriminators [J]. Acta Armamentarii, 2024, 45(6): 1799-1812. |
[12] | LIN Sen, WANG Jingang, GAO Hongwei. Battlefield Image Dehazing Based on Global Compensation Attention Mechanism [J]. Acta Armamentarii, 2024, 45(4): 1344-1353. |
[13] | SONG Xiaoru, LIU Kang, GAO Song, CHEN Chaobo, YAN Kun. Research on Improved YOLOv5-based Military Target Recognition Algorithm Used in Complex Battlefield Environment [J]. Acta Armamentarii, 2024, 45(3): 934-947. |
[14] | LOU Shuhan, WANG Chongchong, GONG Wei, DENG Liyuan, LI Li. Collaborative Regional Information Collection Strategy Based on MLAT-DRL Algorithm [J]. Acta Armamentarii, 2024, 45(12): 4423-4434. |
[15] | LI Haotian, CUI Xinyu, LIU Mengzhen, HUANG Guangyan, LÜ Zhongjie, ZHANG hong. Research on the Identification of Spherical Explosive Fragmentation Damage Effect Based on Siamese Networks and Regional Attention Mechanisms [J]. Acta Armamentarii, 2024, 45(12): 4259-4271. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||