Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (8): 240081-.doi: 10.12382/bgxb.2024.0081
Previous Articles Next Articles
LIU Hui1,2, LI Mingyi1, HAN Lijin1,2,*(), LIU Baoshuai1
Received:
2024-01-26
Online:
2025-08-28
Contact:
HAN Lijin
LIU Hui, LI Mingyi, HAN Lijin, LIU Baoshuai. Research on Infrared Target Detection and Tracking in Dark Environments[J]. Acta Armamentarii, 2025, 46(8): 240081-.
Add to citation manager EndNote|Ris|BibTeX
真实情况 | 预测情况 | |
---|---|---|
正例 | 反例 | |
正例 | TP(真正例) | FN(假反例) |
反例 | FP(假正例) | TN(真反例) |
Table 1 The relationship of positive and negative samples
真实情况 | 预测情况 | |
---|---|---|
正例 | 反例 | |
正例 | TP(真正例) | FN(假反例) |
反例 | FP(假正例) | TN(真反例) |
模型 | P/% | R/% | mAP_0.5/% | 推理时 间/ms | |||
---|---|---|---|---|---|---|---|
B | SC | NL | Dy | ||||
P P | P | 80.4 | 74.6 | 78.6 | 7.6 | ||
82.6 | 77.8 | 82.5 | 7.8 | ||||
P | P | 81.8 | 75.3 | 78.5 | 9.4 | ||
P | P | 81.7 | 76.4 | 79.6 | 6.8 | ||
P | P | P | 83.7 | 79.5 | 82.4 | 8.7 | |
P | P | P | P | 85.3 | 80.7 | 83.7 | 7.5 |
Table 2 Ablation comparison experiment of models
模型 | P/% | R/% | mAP_0.5/% | 推理时 间/ms | |||
---|---|---|---|---|---|---|---|
B | SC | NL | Dy | ||||
P P | P | 80.4 | 74.6 | 78.6 | 7.6 | ||
82.6 | 77.8 | 82.5 | 7.8 | ||||
P | P | 81.8 | 75.3 | 78.5 | 9.4 | ||
P | P | 81.7 | 76.4 | 79.6 | 6.8 | ||
P | P | P | 83.7 | 79.5 | 82.4 | 8.7 | |
P | P | P | P | 85.3 | 80.7 | 83.7 | 7.5 |
方法 | 主干网络 | mAP_0.5/% | mAP_0.5:0.95/% | 推理时间/ms | |||
---|---|---|---|---|---|---|---|
D1 | D2 | D1 | D2 | D1 | D2 | ||
DETR[ | ResNet-101 | 76.4 | 80.4 | 56.4 | 62.2 | 17.6 | 42.4 |
Deformable DETR[ | ResNet-101 | 77.3 | 78.6 | 56.3 | 61.8 | 15.8 | 40.6 |
FasterR-CNN[ | ResNet-101 | 72.8 | 74.5 | 50.9 | 59.6 | 23.3 | 38.2 |
ATSS[ | ResNet-101 | 76.9 | 78.2 | 56.9 | 60.5 | 16.4 | 46.3 |
YOLOv8n | CSPDarknet53 | 78.9 | 81.7 | 58.1 | 62.8 | 8.3 | 21.9 |
YOLOv8s | CSPDarknet53 | 79.4 | 82.2 | 59.4 | 64.7 | 9.1 | 24.6 |
YOLOv8m | CSPDarknet53 | 80.3 | 84.4 | 60.3 | 66.3 | 9.5 | 32.7 |
YOLOv8l | CSPDarknet53 | 83.4 | 85.3 | 61.2 | 67.2 | 12.8 | 36.8 |
YOLOv8x | CSPDarknet53 | 85.7 | 88.3 | 63.8 | 68.7 | 17.4 | 39.6 |
SLD-YOLOv8n | Modified CSP | 84.5 | 85.3 | 62.6 | 66.8 | 7.8 | 15.2 |
SLD-YOLOv8s | Modified CSP | 84.9 | 85.9 | 62.7 | 67.5 | 8.4 | 16.8 |
SLD-YOLOv8m | Modified CSP | 85.4 | 87.4 | 63.7 | 68.1 | 8.6 | 19.4 |
SLD-YOLOv8l | Modified CSP | 88.3 | 89.6 | 65.4 | 70.4 | 10.7 | 23.7 |
SLD-YOLOv8x | Modified CSP | 91.1 | 92.7 | 70.8 | 71.3 | 15.4 | 30.2 |
Table 3 Quantitative evaluation of model experimental results
方法 | 主干网络 | mAP_0.5/% | mAP_0.5:0.95/% | 推理时间/ms | |||
---|---|---|---|---|---|---|---|
D1 | D2 | D1 | D2 | D1 | D2 | ||
DETR[ | ResNet-101 | 76.4 | 80.4 | 56.4 | 62.2 | 17.6 | 42.4 |
Deformable DETR[ | ResNet-101 | 77.3 | 78.6 | 56.3 | 61.8 | 15.8 | 40.6 |
FasterR-CNN[ | ResNet-101 | 72.8 | 74.5 | 50.9 | 59.6 | 23.3 | 38.2 |
ATSS[ | ResNet-101 | 76.9 | 78.2 | 56.9 | 60.5 | 16.4 | 46.3 |
YOLOv8n | CSPDarknet53 | 78.9 | 81.7 | 58.1 | 62.8 | 8.3 | 21.9 |
YOLOv8s | CSPDarknet53 | 79.4 | 82.2 | 59.4 | 64.7 | 9.1 | 24.6 |
YOLOv8m | CSPDarknet53 | 80.3 | 84.4 | 60.3 | 66.3 | 9.5 | 32.7 |
YOLOv8l | CSPDarknet53 | 83.4 | 85.3 | 61.2 | 67.2 | 12.8 | 36.8 |
YOLOv8x | CSPDarknet53 | 85.7 | 88.3 | 63.8 | 68.7 | 17.4 | 39.6 |
SLD-YOLOv8n | Modified CSP | 84.5 | 85.3 | 62.6 | 66.8 | 7.8 | 15.2 |
SLD-YOLOv8s | Modified CSP | 84.9 | 85.9 | 62.7 | 67.5 | 8.4 | 16.8 |
SLD-YOLOv8m | Modified CSP | 85.4 | 87.4 | 63.7 | 68.1 | 8.6 | 19.4 |
SLD-YOLOv8l | Modified CSP | 88.3 | 89.6 | 65.4 | 70.4 | 10.7 | 23.7 |
SLD-YOLOv8x | Modified CSP | 91.1 | 92.7 | 70.8 | 71.3 | 15.4 | 30.2 |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
魏居尚, 綦秀利, 尹成祥, 等. 未知建筑空间中自主搜索任务规划[J]. 火力与指挥控制, 2024, 49(7):156-161.
|
|
|
[6] |
刘建华, 尹国富, 黄道杰, 等. 基于特征融合的可见光与红外图像目标检测[J]. 激光与红外, 2023, 53(3):394-401.
|
|
|
[7] |
王强, 吴乐天, 李红, 等. 基于双支网络协作的红外弱小目标检测[J]. 兵工学报, 2023, 44(10):3165-3176.
doi: 10.12382/bgxb.2022.0605 |
doi: 10.12382/bgxb.2022.0605 |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[1] | TAO Weihao, LUO Yasong, LIN Fajun, QU Jianjing, LIU Yiping. Marine Ship Target Segmentation Method Based on Improved DeepLabV3+ [J]. Acta Armamentarii, 2025, 46(8): 240912-. |
[2] | SHEN Ying, ZHANG Shuo, WANG Shu, SU Yun, XUE Fang, HUANG Feng. A Method for Detecting the Camouflaged Small Target in Complex Scene Using Airborne Polarization Remote Sensing [J]. Acta Armamentarii, 2025, 46(7): 240797-. |
[3] | DONG Yi, KONG Xiaofang, LUO Hong’e, WAN Gang, XIA Yan, WAN Minjie. Lightweight Transmedia High-speed Small Target Detection Method Based on Coordinate Attention Mechanism [J]. Acta Armamentarii, 2025, 46(6): 240380-. |
[4] | QIN Yuemei, CHEN Zhong, YANG Yanbo, LI Shuying. Joint State Equality Constraint Identification and Recursive Filtering Based on Deep Learning [J]. Acta Armamentarii, 2025, 46(6): 240578-. |
[5] | SUN Shiyan, LI Lin, ZHU Huimin, SHI Zhangsong, LIANG Weige. Intelligent Recognition of Flight Pattern Based on IFPRM-SBLFS Deep Learning [J]. Acta Armamentarii, 2025, 46(5): 240893-. |
[6] | LI Yangjun, HUANG Qilong, YANG Li, CHEN Xu. Combat Intention Recognition of Air Cluster Targets Driven by Data and Knowledge [J]. Acta Armamentarii, 2025, 46(2): 240113-. |
[7] | CUI Suxiao, WU Zhe, CUI Yanping, ZHANG Qiang, ZHAO Yuejing. Fault Diagnosis of Planetary Gearbox Based on Frequency Slice Wavelet Transform and Attention-enhanced ConvNeXt Model [J]. Acta Armamentarii, 2025, 46(2): 240329-. |
[8] | FENG Yingbin, GUO Xiaozun, YAN Jiahua. Small UVA Target Detection Algorithm Based on Multi-scale Attention Mechanism [J]. Acta Armamentarii, 2025, 46(1): 231124-. |
[9] | SUN Xichen, LI Weibing, HUANG Changwei, FU Jiawei, FENG Jun. Multi-step-ahead Prediction of Grenade Trajectory Based on CNN-LSTM Enhanced by Deep Learning and Self-attention Mechanism [J]. Acta Armamentarii, 2024, 45(S1): 51-59. |
[10] | ZHAO Zhixin, CAO Yulong, CHEN Yuanshuai, ZHOU Huilin, WANG Yuhao. A Time-invariant Sparse Model and a Deep Unrolling Network for Target Detection of Passive Radar [J]. Acta Armamentarii, 2024, 45(8): 2806-2816. |
[11] | YANG Huanyu, WANG Jun, WU Xiang, BO Yuming, MA Lifeng, LU Jinlei. A Method for Military Aircraft Recognition Using a Coordinate Attention-based Deep Learning Network [J]. Acta Armamentarii, 2024, 45(7): 2128-2143. |
[12] | LIU Peng, XIONG Zeyu, JING Wenbo, FENG Xuan, ZHANG Junhao, LIU Tongbo, WU Xueni, XIA Xuan, WAN Linlin, ZHAO Haili. Degrad Target Detection Algorithm [J]. Acta Armamentarii, 2024, 45(6): 2065-2075. |
[13] | LUO Haowen, HE Shaoming, KANG Youwei. A Multitask Guidance Algorithm Based on Transfer Learning [J]. Acta Armamentarii, 2024, 45(6): 1787-1798. |
[14] | WU Lingxiao, KANG Jiayin, JI Yunxiang, MA Hanyan. Infrared and Visible Image Fusion Using Dual-stream Generative Adversarial Network with Multiple Discriminators [J]. Acta Armamentarii, 2024, 45(6): 1799-1812. |
[15] | LI Ping, ZHOU Yu, CAO Ronggang, LI Fadong, CAO Yuxi, LI Jiawu, ZHANG Anqi. A Denoising Method for Complex Background Noise of Infrared Imaging Guidance System Based on Deep Learning and Dual-domain Fusion [J]. Acta Armamentarii, 2024, 45(6): 1747-1760. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||