
Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (9): 240807-.doi: 10.12382/bgxb.2024.0807
Previous Articles Next Articles
HUO Ziyi1, HE Chenglong1,2,*(
), JIA Song1, YANG Kexu1, MAO Xiang1, HUANG Zhixin1, PU Yanrong1
Received:2024-09-06
Online:2025-09-24
Contact:
HE Chenglong
CLC Number:
HUO Ziyi, HE Chenglong, JIA Song, YANG Kexu, MAO Xiang, HUANG Zhixin, PU Yanrong. Energy Dissipation and Damage Assessment of Ceramic/fiber Ballistic Plate under Multi-impacts[J]. Acta Armamentarii, 2025, 46(9): 240807-.
Add to citation manager EndNote|Ris|BibTeX
| 序号 | 实验工况 | 速度/(m·s-1) | 防弹板被侵彻深度/mm |
|---|---|---|---|
| 1 | 单发子弹 | 806.5 | 20.0 |
| 2 | 单发子弹 | 807.5 | 20.1 |
| 3 | 第1发子弹 | 806.2 | 20.2 |
| 第2发子弹 | 802.0 | 21.1 | |
| 4 | 第1发子弹 | 803.0 | 20.0 |
| 第2发子弹 | 807.5 | 21.0 | |
| 5 | 第1发子弹 | 805.3 | 20.5 |
| 第2发子弹 | 805.1 | 21.5 |
Table 1 Experimental results of ballistic plates
| 序号 | 实验工况 | 速度/(m·s-1) | 防弹板被侵彻深度/mm |
|---|---|---|---|
| 1 | 单发子弹 | 806.5 | 20.0 |
| 2 | 单发子弹 | 807.5 | 20.1 |
| 3 | 第1发子弹 | 806.2 | 20.2 |
| 第2发子弹 | 802.0 | 21.1 | |
| 4 | 第1发子弹 | 803.0 | 20.0 |
| 第2发子弹 | 807.5 | 21.0 | |
| 5 | 第1发子弹 | 805.3 | 20.5 |
| 第2发子弹 | 805.1 | 21.5 |
| 参数 | 数值 | 参数 | 数值 |
|---|---|---|---|
| ρ/(g·cm-3) | 3.8 | T/MPa | 262 |
| G/GPa | 263 | pHEL/MPa | 1460 |
| A | 0.93 | D1 | 0.05 |
| B | 0.31 | D2 | 1 |
| C | 0.007 | K1/GPa | 193 |
| M | 0.6 | K2/GPa | 424 |
| N1 | 0.64 | K3/GPa | 436 |
Table 2 Al2O3 ceramic material parameters [23]
| 参数 | 数值 | 参数 | 数值 |
|---|---|---|---|
| ρ/(g·cm-3) | 3.8 | T/MPa | 262 |
| G/GPa | 263 | pHEL/MPa | 1460 |
| A | 0.93 | D1 | 0.05 |
| B | 0.31 | D2 | 1 |
| C | 0.007 | K1/GPa | 193 |
| M | 0.6 | K2/GPa | 424 |
| N1 | 0.64 | K3/GPa | 436 |
| 材料 | ρ/(kg·m-3) | E/GPa | G/GPa | ν | A1/MPa | B1/MPa | n | C1 | /s-1 |
|---|---|---|---|---|---|---|---|---|---|
| 子弹钢芯 | 7850 | 206 | 80 | 0.3 | 1900 | 1100 | 0.065 | 0.05 | 1×10-4 |
| 子弹铜皮 | 8960 | 124 | 46 | 0.34 | 90 | 292 | 0.31 | 0.025 | 1 |
| 材料 | Tr/K | Tm/K | m | D1 | D2 | D3 | D4 | D5 | |
| 子弹钢芯 | 300 | 1800 | 1 | 0.2 | |||||
| 子弹铜皮 | 300 | 1356 | 1.09 | 0.54 | 4.89 | -3.03 | 0.014 | 1.12 |
Table 3 Material parameters for type 7.62mm bullet [24]
| 材料 | ρ/(kg·m-3) | E/GPa | G/GPa | ν | A1/MPa | B1/MPa | n | C1 | /s-1 |
|---|---|---|---|---|---|---|---|---|---|
| 子弹钢芯 | 7850 | 206 | 80 | 0.3 | 1900 | 1100 | 0.065 | 0.05 | 1×10-4 |
| 子弹铜皮 | 8960 | 124 | 46 | 0.34 | 90 | 292 | 0.31 | 0.025 | 1 |
| 材料 | Tr/K | Tm/K | m | D1 | D2 | D3 | D4 | D5 | |
| 子弹钢芯 | 300 | 1800 | 1 | 0.2 | |||||
| 子弹铜皮 | 300 | 1356 | 1.09 | 0.54 | 4.89 | -3.03 | 0.014 | 1.12 |
| 参数 | 数值 | 参数 | 数值 |
|---|---|---|---|
| ρ/(kg·m-3) | 960 | G23/GPa | 3.6 |
| E1/GPa | 153 | Xt/MPa | 2537 |
| E2/GPa | 153 | Xc/MPa | 1580 |
| E3/GPa | 113 | Yt/MPa | 2537 |
| ν12 | 0.3 | Yc/MPa | 1580 |
| ν13 | 0.3 | Zt/MPa | 340 |
| ν23 | 0.4 | Zc/MPa | 180 |
| G12/GPa | 6 | SC/MPa | 130 |
| G13/GPa | 6 | ST/MPa | 130 |
Table 4 Material parameters of UHMWPE fiber laminates [25]
| 参数 | 数值 | 参数 | 数值 |
|---|---|---|---|
| ρ/(kg·m-3) | 960 | G23/GPa | 3.6 |
| E1/GPa | 153 | Xt/MPa | 2537 |
| E2/GPa | 153 | Xc/MPa | 1580 |
| E3/GPa | 113 | Yt/MPa | 2537 |
| ν12 | 0.3 | Yc/MPa | 1580 |
| ν13 | 0.3 | Zt/MPa | 340 |
| ν23 | 0.4 | Zc/MPa | 180 |
| G12/GPa | 6 | SC/MPa | 130 |
| G13/GPa | 6 | ST/MPa | 130 |
| 参数 | 数值 |
|---|---|
| K/(MPa·mm-1) | 106 |
| Nn/MPa | 30 |
| Ss/MPa | 80 |
| Tt/MPa | 80 |
| GI/(kJ·mm-2) | 0.31 |
| GII/(kJ·mm-2) | 0.63 |
| GIII/(kJ·mm-2) | 0.63 |
Table 5 Material parameters of Cohesive elements[26]
| 参数 | 数值 |
|---|---|
| K/(MPa·mm-1) | 106 |
| Nn/MPa | 30 |
| Ss/MPa | 80 |
| Tt/MPa | 80 |
| GI/(kJ·mm-2) | 0.31 |
| GII/(kJ·mm-2) | 0.63 |
| GIII/(kJ·mm-2) | 0.63 |
| 弹着点位置 | 弹着点序号 | 陶瓷锥截面面积/mm2 | 侵彻深度/mm | 弹坑直径/mm | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 实验结果 | 模拟结果 | 误差/% | 实验结果 | 模拟结果 | 误差/% | 实验结果 | 模拟结果 | 误差/% | |||
| 两发位于相同列 | 1 | 343 | 324 | 5.54 | 11.0 | 10.4 | 5.45 | 22.4 | 22.0 | 1.79 | |
| 2 | 345 | 325 | 5.80 | 11.1 | 10.8 | 2.70 | 23.0 | 22.0 | 4.35 | ||
| 两发位于相邻列 | 1 | 340 | 326 | 4.12 | 11.0 | 10.7 | 2.73 | 22.5 | 21.7 | 3.56 | |
| 2 | 346 | 327 | 5.49 | 11.3 | 10.7 | 5.30 | 22.6 | 22.0 | 2.65 | ||
Table 6 Comparison of experimental and numerically simulated results
| 弹着点位置 | 弹着点序号 | 陶瓷锥截面面积/mm2 | 侵彻深度/mm | 弹坑直径/mm | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 实验结果 | 模拟结果 | 误差/% | 实验结果 | 模拟结果 | 误差/% | 实验结果 | 模拟结果 | 误差/% | |||
| 两发位于相同列 | 1 | 343 | 324 | 5.54 | 11.0 | 10.4 | 5.45 | 22.4 | 22.0 | 1.79 | |
| 2 | 345 | 325 | 5.80 | 11.1 | 10.8 | 2.70 | 23.0 | 22.0 | 4.35 | ||
| 两发位于相邻列 | 1 | 340 | 326 | 4.12 | 11.0 | 10.7 | 2.73 | 22.5 | 21.7 | 3.56 | |
| 2 | 346 | 327 | 5.49 | 11.3 | 10.7 | 5.30 | 22.6 | 22.0 | 2.65 | ||
| 参数 | 数值 |
|---|---|
| 击中损伤区域概率 | 4.55 |
| 损伤区域内穿透概率 | 22.78 |
| 整体穿板概率 | 1.04 |
Table 7 Probability of the second bullet penetrating into the Al2O3/UHMWPE plate %
| 参数 | 数值 |
|---|---|
| 击中损伤区域概率 | 4.55 |
| 损伤区域内穿透概率 | 22.78 |
| 整体穿板概率 | 1.04 |
| 参数 | 第3发弹着点位置 | |||
|---|---|---|---|---|
| O1 | O2 | O3 | O4 | |
| 击中损伤区域概率 | 9.35 | 11.88 | 8.70 | |
| 穿透损伤区域概率 | 58.29 | 61.89 | 58.04 | |
| 整体穿板概率 | 100 | 5.45 | 7.35 | 5.05 |
Table 8 Probability of the third bullet penetrating into the Al2O3/UHMWPE plate %
| 参数 | 第3发弹着点位置 | |||
|---|---|---|---|---|
| O1 | O2 | O3 | O4 | |
| 击中损伤区域概率 | 9.35 | 11.88 | 8.70 | |
| 穿透损伤区域概率 | 58.29 | 61.89 | 58.04 | |
| 整体穿板概率 | 100 | 5.45 | 7.35 | 5.05 |
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
陆文成, 武一丁, 余毅磊, 等. 不同厚度比的 SiC 陶瓷-纤维增强树脂基复合材料装甲的损伤失效及其抗弹性能[J]. 复合材料学报, 2024, 42(2):1125-1139.
|
|
|
|
| [5] |
张林, 陈斌, 谭清华, 等. 陶瓷复合装甲抗14.5 mm穿燃弹侵彻性能[J]. 兵工学报, 2022, 43(4):758-767.
doi: 10.12382/bgxb.2021.0244 |
|
doi: 10.12382/bgxb.2021.0244 |
|
| [6] |
李永鹏, 徐豫新, 张健, 等. SiC陶瓷/UHMWPE纤维复合结构抗12.7mm穿甲燃烧弹试验与仿真[J]. 兵工学报, 2022, 43(6):1355-1364.
doi: 10.12382/bgxb.2021.0604 |
|
doi: 10.12382/bgxb.2021.0604 |
|
| [7] |
陈智勇, 徐颖强, 李妙玲, 等. 碳化硅木质陶瓷复合装甲结构设计及数值模拟优化[J]. 稀有金属材料与工程, 2021, 50(4):1146-1155.
|
|
|
|
| [8] |
侯海量, 朱锡, 李伟. 轻型陶瓷/金属复合装甲抗弹机理研究[J]. 兵工学报, 2013, 34(1):105-114.
doi: 10.3969/j.issn.1000-1093.2013.01.019 |
|
|
|
| [9] |
侯海量, 朱锡, 阚于龙. 轻型陶瓷复合装甲结构抗弹性能研究进展[J]. 兵工学报, 2008, 29(2):208-216.
|
|
|
|
| [10] |
杜忠华. 动能弹侵彻陶瓷复合装甲机理[D]. 南京: 南京理工大学, 2002.
|
|
|
|
| [11] |
杜忠华, 赵国志, 杨玉林. 陶瓷/玻璃纤维/钢板复合靶板抗弹性能的研究[J]. 兵工学报, 2003, 24(2):219-221.
|
|
|
|
| [12] |
doi: 10.1016/j.dt.2021.10.003 |
| [13] |
|
| [14] |
余毅磊, 王晓东, 任文科, 等. 三层组合陶瓷复合装甲的抗侵彻性能及其损伤机制[J]. 兵工学报, 2024, 45(1):44-57.
doi: 10.12382/bgxb.2022.0319 |
|
doi: 10.12382/bgxb.2022.0319 |
|
| [15] |
刘东旭, 温垚珂, 董方栋, 等. SiC/UHMWPE防弹插板在步枪弹侵彻下的动态响应研究[J]. 振动与冲击, 2023, 42(12):264-273.
|
|
|
|
| [16] |
刘保华, 徐文龙, 王成, 等. 接触爆炸下聚脲涂层增强钢板的抗爆性能[J]. 兵工学报, 2024, 45(5):1637-1647.
doi: 10.12382/bgxb.2023.0090 |
|
doi: 10.12382/bgxb.2023.0090 |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
袁瑞, 温垚珂, 刘东旭, 等. 典型7.62mm狙击弹对有生目标的杀伤效应[J]. 兵工学报, 2024, 45(9):2973-2981.
doi: 10.12382/bgxb.2023.0553 |
|
doi: 10.12382/bgxb.2023.0553 |
|
| [22] |
孔晓鹏. 陶瓷复合装甲脱粘机理和抗多发打击研究[D]. 长沙: 国防科学技术大学, 2010:55-57.
|
|
|
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
李子轩, 温垚珂, 董方栋, 等. 基于人体解剖结构的单兵防护后损伤评估[J]. 兵工学报, 2022, 43(9):2190-2199.
|
|
|
|
| [28] |
张金洋, 温垚珂, 陈箐, 等. 人体易损性建模及其评估技术研究[J]. 兵器装备工程学报, 2016, 37(4):165-168.
|
|
|
|
| [29] |
郑浩, 温垚珂, 闫文敏, 等. 基于防弹衣背面动态变形的钝击伤评估[J]. 兵器装备工程学报, 2021, 42(6):129-132.
|
|
|
|
| [30] |
温垚珂, 李子轩, 闫文敏, 等. 基于3D-DIC技术的防弹头盔性能测试与评估[J]. 北京理工大学学报, 2022, 42(5):463-470.
|
|
|
| [1] | WANG Lu, YAN Jiang, YIN Peng, LIU Yan, HUANG Fenglei. Optimal Allocation Algorithm of Firepower Resources Based on the Damage Characteristics [J]. Acta Armamentarii, 2025, 46(8): 240971-. |
| [2] | WEI Zhenqian, RONG Jili, WEI Huiyang, LI Furong, CHEN Zichao. Dynamic Response and Energy Dissipation of Foam Aluminum Sandwich Panel Subjected to Underwater Impulsive Loading [J]. Acta Armamentarii, 2025, 46(6): 240539-. |
| [3] | HOU Peng, GE Yuxue, PEI Yang, YUE Yuan, AI Junqiang. UAV Air-to-ground Attack Task Assignment Method Based on Damage Assessment Results [J]. Acta Armamentarii, 2025, 46(2): 240212-. |
| [4] | ZHANG Siwei, ZHANG Pengcheng, WANG Zi, PENG Wenlian, TAN Linghua, ZHANG Xinggao. Advances in Formulation and Damage Assessment of Thermobaric Explosive [J]. Acta Armamentarii, 2024, 45(S1): 147-160. |
| [5] | XU Yibo, YAN Jiarun, ZENG Zhiwen, LÜ Yunxiao, FENG Shiru, LU Huimin. Autonomous Attack Decision-making of Missile Swarm on Ground Targets Based on Visual Damage Assessment without Communication [J]. Acta Armamentarii, 2024, 45(12): 4435-4450. |
| [6] | BAI Zhun, HU Yutao, QIAN Bingwen, YAO Hang, LI Xian, GUO Xuekang. Experimental Study on Cumulative Damage of Shear Wall Under Multiple Internal Explosions [J]. Acta Armamentarii, 2023, 44(S1): 50-58. |
| [7] | WANG Yu, WANG Xiao-ming, CHENG Jie, YU Ji-yan. Analysis on Impact Point Response of a Dual-spin Projectile with Lateral Force Based on Equivalent Force Method [J]. Acta Armamentarii, 2016, 37(8): 1379-1387. |
| [8] | ZHU De-fang, PENG Jing-ming, CHEN Peng. Laser Target for Large-range Detection of Impact Point of Air-to-ground Attack Training Projectile from Airborne Gun [J]. Acta Armamentarii, 2016, 37(4): 763-768. |
| [9] | QU Wan-jia, XU Zhong-lin, ZHANG Bo-lin, LIU Ying. Battle Damage Assessment Method Based on BN-Cloud Model [J]. Acta Armamentarii, 2016, 37(11): 2075-2084. |
| [10] | MAO Ming, ZHANG Ya-feng, DU Fu, CHEN Yi-jie. Five Scientific and Technological Problems on Running System of High Mobility Tracked Vehicle [J]. Acta Armamentarii, 2015, 36(8): 1546-1555. |
| [11] | LI Xing-long, JIA Fang-xiu, WANG Xiao-ming, YAO Wen-jin, WU Wei. Impact Point Prediction of Terminal Correction Projectile Based on Linear Trajectory Model [J]. Acta Armamentarii, 2015, 36(7): 1188-1194. |
| [12] | LI Chao-wang, GAO Min, SONG Wei-dong. Real-time Impact Point Prediction of Rocket Projectile Based on Perturbation Theory [J]. Acta Armamentarii, 2014, 35(8): 1164-1171. |
| [13] | SHI Jin-song, XU Jin-yu, REN Wei-bo, SU Hao-yang. Research on Energy Dissipation and Fractal Characteristics of Concrete after Exposure to Elevated Temperatures underImpact Loading [J]. Acta Armamentarii, 2014, 35(5): 703-710. |
| [14] | WU Zheng-long, ZHAO Zhong-shi. A Damage Assessment Model Based on Adaptive Neuro-fuzzy Inference System [J]. Acta Armamentarii, 2012, 33(11): 1352-1357. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||