Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (S1): 219-230.doi: 10.12382/bgxb.2024.0587
Previous Articles Next Articles
LIU Kunlong1, WANG Hu1,*(), LIU Xiaoqiang1, NIU Shuaixu1, HUANG Yi1, FU Qi2, ZHAO Tao3
Received:
2024-07-15
Online:
2024-11-06
Contact:
WANG Hu
CLC Number:
LIU Kunlong, WANG Hu, LIU Xiaoqiang, NIU Shuaixu, HUANG Yi, FU Qi, ZHAO Tao. Illumination Perception and Feature Enhancement Network for RGB-T Semantic Segmentation[J]. Acta Armamentarii, 2024, 45(S1): 219-230.
Add to citation manager EndNote|Ris|BibTeX
阶段 | 输入 | 具体操作 | 输出 |
---|---|---|---|
RGB输入图像 (640×480×3) | Conv(s=1,p=1),ReLU, Maxpool(k=2×2) | 下采样特征图 (320×240×64) | |
S1:特征图下采样 | 下采样特征图 (320×240×64) | Conv(s=1,p=1),ReLU, Maxpool(k=2×2) | 下采样特征图 (160×120×128) |
下采样特征图 (160×120×128) | Conv(s=1,p=1),ReLU, Maxpool(k=2×2) | 下采样特征图 (80×60×256) | |
下采样特征图 (80×60×256) | Conv(s=1,p=1),ReLU, Maxpool(k=2×2) | 下采样特征图 (40×30×256) | |
S2:光照感知特征图生成 | 下采样特征图 (40×30×256) | Conv(s=1,p=1) | 光照感知特征图 (40×30×2) |
S3:分类 | 光照感知特征图 (40×30×2) | 全局平均池化 | 分类特征图 (1×1×2) |
Table 1 Details of illumination perception network construction
阶段 | 输入 | 具体操作 | 输出 |
---|---|---|---|
RGB输入图像 (640×480×3) | Conv(s=1,p=1),ReLU, Maxpool(k=2×2) | 下采样特征图 (320×240×64) | |
S1:特征图下采样 | 下采样特征图 (320×240×64) | Conv(s=1,p=1),ReLU, Maxpool(k=2×2) | 下采样特征图 (160×120×128) |
下采样特征图 (160×120×128) | Conv(s=1,p=1),ReLU, Maxpool(k=2×2) | 下采样特征图 (80×60×256) | |
下采样特征图 (80×60×256) | Conv(s=1,p=1),ReLU, Maxpool(k=2×2) | 下采样特征图 (40×30×256) | |
S2:光照感知特征图生成 | 下采样特征图 (40×30×256) | Conv(s=1,p=1) | 光照感知特征图 (40×30×2) |
S3:分类 | 光照感知特征图 (40×30×2) | 全局平均池化 | 分类特征图 (1×1×2) |
方法 | 无标签 | 车辆 | 人 | 自行车 | 地线 | 车档 | 护栏 | 色锥 | 凸起 | mAcc | mIoU | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acc | IoU | Acc | IoU | Acc | IoU | Acc | IoU | Acc | IoU | Acc | IoU | Acc | IoU | Acc | IoU | Acc | IoU | |||
DUC[ | 98.8 | 97.7 | 92.4 | 82.5 | 84.1 | 69.4 | 71.3 | 58.9 | 58.4 | 40.1 | 25.5 | 20.9 | 17.3 | 3.4 | 60.0 | 42.1 | 52.2 | 40.9 | 61.2 | 50.7 |
DANet[ | 97.4 | 96.3 | 91.3 | 71.3 | 82.7 | 48.1 | 79.2 | 51.8 | 48.0 | 30.2 | 25.5 | 18.2 | 5.2 | 0.7 | 47.6 | 30.3 | 19.9 | 18.8 | 55.2 | 41.3 |
HRNet[ | 99.4 | 98.0 | 90.8 | 86.9 | 75.1 | 67.3 | 70.2 | 59.2 | 39.1 | 35.3 | 28.0 | 23.1 | 12.1 | 1.7 | 50.4 | 46.6 | 55.8 | 47.3 | 57.9 | 51.7 |
LDFNet[ | 96.2 | 95.3 | 87.0 | 67.9 | 83.9 | 58.2 | 82.7 | 37.2 | 67.4 | 30.4 | 32.9 | 20.1 | 8.2 | 0.8 | 67.4 | 27.1 | 55.6 | 46.0 | 64.6 | 42.5 |
ACNet[ | 97.6 | 96.7 | 93.7 | 79.4 | 86.8 | 64.7 | 77.8 | 52.7 | 57.2 | 32.9 | 51.5 | 28.4 | 7.0 | 0.8 | 57.5 | 16.9 | 49.8 | 44.4 | 64.3 | 46.3 |
SA-Gate[ | 98.2 | 96.8 | 86.0 | 73.8 | 80.8 | 59.2 | 69.4 | 51.3 | 56.7 | 38.4 | 24.7 | 19.3 | 0.0 | 0.0 | 56.9 | 24.5 | 52.1 | 48.8 | 58.3 | 45.8 |
MFNet[ | 98.7 | 96.9 | 77.2 | 65.9 | 67.0 | 58.9 | 53.9 | 42.9 | 36.2 | 29.9 | 12.5 | 9.9 | 0.1 | 0.0 | 30.3 | 25.2 | 30.0 | 27.7 | 45.1 | 39.7 |
RTFNet[ | 99.6 | 98.2 | 91.3 | 86.3 | 78.2 | 67.8 | 71.5 | 58.2 | 59.8 | 43.7 | 32.1 | 24.3 | 13.4 | 3.6 | 40.4 | 26.0 | 73.5 | 57.2 | 62.2 | 54.6 |
PSTNet[ | — | 97.0 | — | 76.8 | — | 52.6 | — | 55.3 | — | 29.6 | — | 25.1 | — | 15.1 | — | 39.4 | — | 45.0 | — | 48.4 |
AFNet[ | — | — | 91.2 | 86.0 | 76.3 | 67.4 | 72.8 | 62.0 | 49.8 | 43.0 | 35.3 | 28.9 | 24.5 | 4.6 | 50.1 | 44.9 | 61.0 | 56.6 | 62.2 | 54.6 |
MMNet[ | — | — | — | 83.9 | — | 69.3 | — | 59.0 | — | 43.2 | — | 24.7 | — | 4.6 | — | 42.2 | — | 50.7 | 62.7 | 52.8 |
MLFNet[ | — | — | — | 82.3 | — | 68.1 | — | 67.3 | — | 27.3 | — | 30.4 | — | 15.7 | — | 55.6 | — | 40.1 | — | 53.8 |
本文算法 | 99.0 | 97.9 | 92.4 | 85.3 | 82.1 | 71.6 | 73.5 | 60.7 | 61.7 | 46.1 | 41.0 | 31.4 | 38.0 | 7.1 | 54.6 | 47.3 | 71.2 | 46.0 | 68.1 | 54.8 |
Table 3 Comparison of test results of different models
方法 | 无标签 | 车辆 | 人 | 自行车 | 地线 | 车档 | 护栏 | 色锥 | 凸起 | mAcc | mIoU | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acc | IoU | Acc | IoU | Acc | IoU | Acc | IoU | Acc | IoU | Acc | IoU | Acc | IoU | Acc | IoU | Acc | IoU | |||
DUC[ | 98.8 | 97.7 | 92.4 | 82.5 | 84.1 | 69.4 | 71.3 | 58.9 | 58.4 | 40.1 | 25.5 | 20.9 | 17.3 | 3.4 | 60.0 | 42.1 | 52.2 | 40.9 | 61.2 | 50.7 |
DANet[ | 97.4 | 96.3 | 91.3 | 71.3 | 82.7 | 48.1 | 79.2 | 51.8 | 48.0 | 30.2 | 25.5 | 18.2 | 5.2 | 0.7 | 47.6 | 30.3 | 19.9 | 18.8 | 55.2 | 41.3 |
HRNet[ | 99.4 | 98.0 | 90.8 | 86.9 | 75.1 | 67.3 | 70.2 | 59.2 | 39.1 | 35.3 | 28.0 | 23.1 | 12.1 | 1.7 | 50.4 | 46.6 | 55.8 | 47.3 | 57.9 | 51.7 |
LDFNet[ | 96.2 | 95.3 | 87.0 | 67.9 | 83.9 | 58.2 | 82.7 | 37.2 | 67.4 | 30.4 | 32.9 | 20.1 | 8.2 | 0.8 | 67.4 | 27.1 | 55.6 | 46.0 | 64.6 | 42.5 |
ACNet[ | 97.6 | 96.7 | 93.7 | 79.4 | 86.8 | 64.7 | 77.8 | 52.7 | 57.2 | 32.9 | 51.5 | 28.4 | 7.0 | 0.8 | 57.5 | 16.9 | 49.8 | 44.4 | 64.3 | 46.3 |
SA-Gate[ | 98.2 | 96.8 | 86.0 | 73.8 | 80.8 | 59.2 | 69.4 | 51.3 | 56.7 | 38.4 | 24.7 | 19.3 | 0.0 | 0.0 | 56.9 | 24.5 | 52.1 | 48.8 | 58.3 | 45.8 |
MFNet[ | 98.7 | 96.9 | 77.2 | 65.9 | 67.0 | 58.9 | 53.9 | 42.9 | 36.2 | 29.9 | 12.5 | 9.9 | 0.1 | 0.0 | 30.3 | 25.2 | 30.0 | 27.7 | 45.1 | 39.7 |
RTFNet[ | 99.6 | 98.2 | 91.3 | 86.3 | 78.2 | 67.8 | 71.5 | 58.2 | 59.8 | 43.7 | 32.1 | 24.3 | 13.4 | 3.6 | 40.4 | 26.0 | 73.5 | 57.2 | 62.2 | 54.6 |
PSTNet[ | — | 97.0 | — | 76.8 | — | 52.6 | — | 55.3 | — | 29.6 | — | 25.1 | — | 15.1 | — | 39.4 | — | 45.0 | — | 48.4 |
AFNet[ | — | — | 91.2 | 86.0 | 76.3 | 67.4 | 72.8 | 62.0 | 49.8 | 43.0 | 35.3 | 28.9 | 24.5 | 4.6 | 50.1 | 44.9 | 61.0 | 56.6 | 62.2 | 54.6 |
MMNet[ | — | — | — | 83.9 | — | 69.3 | — | 59.0 | — | 43.2 | — | 24.7 | — | 4.6 | — | 42.2 | — | 50.7 | 62.7 | 52.8 |
MLFNet[ | — | — | — | 82.3 | — | 68.1 | — | 67.3 | — | 27.3 | — | 30.4 | — | 15.7 | — | 55.6 | — | 40.1 | — | 53.8 |
本文算法 | 99.0 | 97.9 | 92.4 | 85.3 | 82.1 | 71.6 | 73.5 | 60.7 | 61.7 | 46.1 | 41.0 | 31.4 | 38.0 | 7.1 | 54.6 | 47.3 | 71.2 | 46.0 | 68.1 | 54.8 |
B | I.W. | AIFE | MFIF | mAcc/% | MIoU/% |
---|---|---|---|---|---|
√ | 58.2 | 49.4 | |||
√ | √ | √ | 59.2 | 51.2 | |
√ | √ | 63.2 | 51.1 | ||
√ | √ | √ | 64.3 | 51.9 | |
√ | √ | √ | √ | 68.1 | 54.8 |
Table 5 Objective performance comparison table for different components
B | I.W. | AIFE | MFIF | mAcc/% | MIoU/% |
---|---|---|---|---|---|
√ | 58.2 | 49.4 | |||
√ | √ | √ | 59.2 | 51.2 | |
√ | √ | 63.2 | 51.1 | ||
√ | √ | √ | 64.3 | 51.9 | |
√ | √ | √ | √ | 68.1 | 54.8 |
方法 | mAcc/% | mIoU/% |
---|---|---|
图像级权重 | 64.9 | 52.2 |
像素级权重 | 68.1 | 54.8 |
Table 6 Objective performance comparison table for different illumination weights
方法 | mAcc/% | mIoU/% |
---|---|---|
图像级权重 | 64.9 | 52.2 |
像素级权重 | 68.1 | 54.8 |
[1] |
李良福, 陈卫东, 高强, 等. 基于深度学习的光电系统智能目标识别[J]. 兵工学报, 2022, 43(增刊1):162-168.
|
|
|
[2] |
|
[3] |
|
[4] |
doi: 10.1109/TIP.2003.817242 pmid: 18244710 |
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
宋亮, 谷玉海, 石文天. 基于改进BiSeNet的非结构化道路分割算法研究[J]. 应用光学, 2023, 44(3):556-564.
|
|
|
[14] |
刘致驿, 孙韶媛, 任正云, 等. 基于改进DeepLabv3+的无人车夜间红外图像语义分割[J]. 应用光学, 2020, 41(1):180-185.
doi: 10.5768/JAO202041.0106002 |
|
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[1] | WANG Yeru, YANG Geng, LIU Shu, XU Xiao, CHEN Huajie, QIN Feiwei, XU Huajie. GCN-based Detection of Occluded Key Parts of Vehicle Target [J]. Acta Armamentarii, 2024, 45(S1): 242-251. |
[2] | GUO Aiqiang, LI Tianpeng, ZHU Xi, GUAN Zhichao, LI Men, DONG Hongyu, GAO Xinbao. Smoke Screen Video Detection and Parameter Extraction Based on Convolutional Neural Network and Spatio-temporal Features [J]. Acta Armamentarii, 2024, 45(8): 2478-2486. |
[3] | YANG Huanyu, WANG Jun, WU Xiang, BO Yuming, MA Lifeng, LU Jinlei. A Method for Military Aircraft Recognition Using a Coordinate Attention-based Deep Learning Network [J]. Acta Armamentarii, 2024, 45(7): 2128-2143. |
[4] | LIU Fang, LI Shiwei, LU Xi, GUO Ce’an. Prediction of Peak Overpressure of Underwater Cylindrical Charge Based on PSO-CNN-XGBoost [J]. Acta Armamentarii, 2024, 45(5): 1602-1612. |
[5] | LIU Yi, REN Jihuan, WU Xiang, BO Yuming. Newly Equipped Armored Vehicle Classification Based on Integrated Transfer Learning [J]. Acta Armamentarii, 2023, 44(8): 2319-2328. |
[6] | WU Liyang, GUO Pengcheng, LIU Chao, LI Wenqiang. Radar Signal Modulation Type Recognition Based on Attention Mechanism Enhanced Residual Networks [J]. Acta Armamentarii, 2023, 44(8): 2310-2318. |
[7] | ZHOU Yu, CAO Ronggang, LI Ping, MA Xiao. A Fuze Burst Point Detection Method for Outfield Test Images [J]. Acta Armamentarii, 2023, 44(8): 2453-2464. |
[8] | HE Jincheng, HAN Yongcheng, ZHANG Wenwen, HE Weiji, CHEN Qian. True Color Low-Light Image Enhancement Based on Channel-Calibrated Convolution [J]. Acta Armamentarii, 2023, 44(6): 1643-1654. |
[9] | LIU Jia, LIU Hai’ou, CHEN Huiyan, MAO Feihong. Road Types Identification Method of Unmanned Tracked Vehicles Based on Fusion Features [J]. Acta Armamentarii, 2023, 44(5): 1267-1276. |
[10] | ZHANG Liang'an, CHEN Yang, XIE Shenglong, LIU Tongxin. Crack Detection System for Aircraft Protective Grill based on Machine Vision and Deep Learning [J]. Acta Armamentarii, 2023, 44(2): 507-516. |
[11] | DING Bosheng, ZHANG Ruiheng, XU Lixin, CHEN Huiming. Sand-dust Image Restoration Using Gray Compensation and Feature Fusion [J]. Acta Armamentarii, 2023, 44(10): 3115-3126. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||