Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (2): 240074-.doi: 10.12382/bgxb.2024.0074
Previous Articles Next Articles
Received:
2024-01-24
Online:
2025-02-28
Contact:
MIAO Fuxing
CLC Number:
JIN Yue, MIAO Fuxing. Impact Resistance and Energy Absorption Properties of CFRP Thin-walled Circular Tube with Porous Arrays[J]. Acta Armamentarii, 2025, 46(2): 240074-.
Add to citation manager EndNote|Ris|BibTeX
几何参数 | d | l | h | j | p | t |
---|---|---|---|---|---|---|
数值 | 70 | 110 | 2.5 | 0.75 | 0.75 | 0.156 |
Table 1 Geometric parameters of CFRP thin-walled circular tube with porous array mm
几何参数 | d | l | h | j | p | t |
---|---|---|---|---|---|---|
数值 | 70 | 110 | 2.5 | 0.75 | 0.75 | 0.156 |
模量/MPa | 泊松比 | 强度/MPa | 阻尼 系数 | 密度/ (g·cm-3) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E11 | E22 | E33 | G23 | G12 | G13 | u23 | u12 | u13 | XT | XC | YT | YC | ZT | ZC | S23 | S12 | S13 | β | ρ |
114000 | 8610 | 8610 | 3000 | 4160 | 4160 | 0.45 | 0.3 | 0.3 | 2688 | 1458 | 69.5 | 236 | 55.5 | 175 | 95.6 | 136 | 136 | 1E-9 | 1.51 |
Table 2 Composite material parameters[22]
模量/MPa | 泊松比 | 强度/MPa | 阻尼 系数 | 密度/ (g·cm-3) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E11 | E22 | E33 | G23 | G12 | G13 | u23 | u12 | u13 | XT | XC | YT | YC | ZT | ZC | S23 | S12 | S13 | β | ρ |
114000 | 8610 | 8610 | 3000 | 4160 | 4160 | 0.45 | 0.3 | 0.3 | 2688 | 1458 | 69.5 | 236 | 55.5 | 175 | 95.6 | 136 | 136 | 1E-9 | 1.51 |
模量/MPa | 强度/MPa | 断裂韧性/(J·m-2) | ||||||
---|---|---|---|---|---|---|---|---|
En | Et | Es | Nmax | Tmax | Smax | GIC | GIIC | GIIIC |
57878 | 57878 | 37489 | 59.4 | 77 | 77 | 0.5544 | 2.8116 | 2.8116 |
Table 3 Cohesive element parameters[22]
模量/MPa | 强度/MPa | 断裂韧性/(J·m-2) | ||||||
---|---|---|---|---|---|---|---|---|
En | Et | Es | Nmax | Tmax | Smax | GIC | GIIC | GIIIC |
57878 | 57878 | 37489 | 59.4 | 77 | 77 | 0.5544 | 2.8116 | 2.8116 |
吸能指标 | 实验结果[ | 本文模拟 | 相对误差/% |
---|---|---|---|
Fp/kN | 50.34 | 48.13 | 4.4 |
Fm/kN | 26.37 | 25.90 | 1.8 |
Ws/(kJ·kg-1) | 53.99 | 53.75 | 0.4 |
Table 4 Comparison of experimental results[22] and simulated results of CFRP thin-walled circular tube
吸能指标 | 实验结果[ | 本文模拟 | 相对误差/% |
---|---|---|---|
Fp/kN | 50.34 | 48.13 | 4.4 |
Fm/kN | 26.37 | 25.90 | 1.8 |
Ws/(kJ·kg-1) | 53.99 | 53.75 | 0.4 |
薄壁管 | Fp/kN | Fm/kN | Ec/% | Ws/ (kJ·kg-1) |
---|---|---|---|---|
CFRP多孔阵列薄壁圆管 | 562.69 | 50.50 | 8.98 | 61.24 |
CFRP圆管[ | 96.86 | 53.58 | 55 | 60.37 |
CFRP方管[ | 162 | 32 | 19.75 | 44.69 |
Table 5 Comparison of axial impact resistances and energy absorption properties of thin-walled tubes
薄壁管 | Fp/kN | Fm/kN | Ec/% | Ws/ (kJ·kg-1) |
---|---|---|---|---|
CFRP多孔阵列薄壁圆管 | 562.69 | 50.50 | 8.98 | 61.24 |
CFRP圆管[ | 96.86 | 53.58 | 55 | 60.37 |
CFRP方管[ | 162 | 32 | 19.75 | 44.69 |
薄壁管 | Fp/kN | Fm/kN | Ec/% | Ws/ (kJ·kg-1) |
---|---|---|---|---|
CFRP多孔阵列薄壁圆管 | 104.90 | 12.02 | 11.46 | 6.74 |
CFRP圆管[ | 3.66 | 2.31 | 63 | 0.83 |
Ti6Al4V圆管[ | 11.33 | - | - | 3.40 |
Table 6 Comparison of lateral impact resistances and energy absorption properties of thin-walled tubes
薄壁管 | Fp/kN | Fm/kN | Ec/% | Ws/ (kJ·kg-1) |
---|---|---|---|---|
CFRP多孔阵列薄壁圆管 | 104.90 | 12.02 | 11.46 | 6.74 |
CFRP圆管[ | 3.66 | 2.31 | 63 | 0.83 |
Ti6Al4V圆管[ | 11.33 | - | - | 3.40 |
铺层角度 | 方向 | Fp/ kN | Fm/ kN | Ec/ % | Ws/ (kJ·kg-1) |
---|---|---|---|---|---|
[90°/0°/90°/0°]2S | 轴向 | 562.69 | 50.50 | 8.98 | 61.24 |
横向 | 104.90 | 12.02 | 11.46 | 6.74 | |
[90°/45°/90°/0°]2S | 轴向 | 505.85 | 58.14 | 11.49 | 70.49 |
横向 | 104.64 | 11.90 | 11.37 | 6.67 | |
[90°/45°/-45°/0°]2S | 轴向 | 705.74 | 62.95 | 8.93 | 76.36 |
横向 | 146.82 | 12.68 | 8.63 | 7.09 |
Table 7 Comparison of impact resistances and energy absorption properties of CFRP thin-wall tube with different lay-out angles
铺层角度 | 方向 | Fp/ kN | Fm/ kN | Ec/ % | Ws/ (kJ·kg-1) |
---|---|---|---|---|---|
[90°/0°/90°/0°]2S | 轴向 | 562.69 | 50.50 | 8.98 | 61.24 |
横向 | 104.90 | 12.02 | 11.46 | 6.74 | |
[90°/45°/90°/0°]2S | 轴向 | 505.85 | 58.14 | 11.49 | 70.49 |
横向 | 104.64 | 11.90 | 11.37 | 6.67 | |
[90°/45°/-45°/0°]2S | 轴向 | 705.74 | 62.95 | 8.93 | 76.36 |
横向 | 146.82 | 12.68 | 8.63 | 7.09 |
[1] |
曹建凡, 白树林, 秦文贞, 等. 碳纤维增强热塑性复合材料的制备与性能研究进展[J]. 复合材料学报, 2023, 40(3):1229-1247.
|
|
|
[2] |
|
[3] |
doi: 10.1016/j.dt.2018.02.001 |
[4] |
|
[5] |
麻震宇, 张祎桀, 张琪, 等. 尾座式电动飞机复合材料机翼结构优化设计[J]. 国防科技大学学报, 2023, 45(6):20-31.
|
|
|
[6] |
|
[7] |
张震东, 王雪琴, 任杰, 等. 连续碳纤维增强环氧树脂复合材料圆管多胞结构的准静态压缩响应[J]. 兵工学报, 2022, 43(5):1185-1193.
|
|
|
[8] |
|
[9] |
|
[10] |
解江, 张雪晗, 宋山山, 等. CFRP薄壁C型柱轴向压缩破坏机制及吸能特性[J]. 复合材料学报, 2018, 35(12):3261-3270.
|
|
|
[11] |
王雪琴, 张震东, 马大为, 等. 碳纤维增强环氧树脂复合材料圆管多胞填充结构吸能特性的准静态压缩试验[J]. 复合材料学报, 2021, 38(9):2894-2903.
|
|
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
孟云聪, 周光明, 蔡登安. 连续碳纤维3D打印圆形增强蜂窝的面内压缩性能[J]. 复合材料学报, 2024, 41(4):1782-1793.
|
|
|
[17] |
曹丰, 曾志勇, 黄建, 等. 连续纤维增强复合材料的3D打印工艺及应用进展[J]. 中国科学:技术科学, 2023, 53(11):1815-1833.
|
|
|
[18] |
|
[19] |
许玉德, 缪雯颖, 严道斌, 等. 基于改进混合模式内聚力模型的无砟轨道层间损伤分析[J]. 铁道学报, 2021, 43(4):125-135.
|
|
|
[20] |
|
[21] |
杨帆, 王鹏, 范华林, 等. 薄壁管状吸能结构的吸能性能及变形模式的理论研究进展[J]. 力学季刊, 2018, 39(4):663-680.
doi: 10.15959/j.cnki.0254-0053.2018.04.001 |
doi: 10.15959/j.cnki.0254-0053.2018.04.001 |
|
[22] |
白佳瑶, 黄金红, 侯兵, 等. 不同压溃速度下复合材料圆管吸能特性实验及数值模拟研究[J]. 航空科学技术, 2021, 32(12):66-73.
|
|
|
[23] |
李顺峰. 碳纤维复合材料(CFRP)薄壁结构吸能特性实验研究[D]. 长沙: 湖南大学, 2017:13-19.
|
|
|
[24] |
白少璞. CFRP薄壁管吸能特性研究及优化设计[D]. 大连: 大连理工大学, 2019:29-32.
|
|
|
[25] |
|
[26] |
|
[1] | KONG Xiangqing, LI Ruonan, CHANG Yahui, FU Ying. Numerical Simulation of Blast Resistance of Foam-filled Auxetic Honeycomb Sandwich Structures [J]. Acta Armamentarii, 2024, 45(9): 3091-3104. |
[2] | XIANG Xinmei, LUO Linlin, FU Zushu, HE Shizhu. Effect of Gradient Mode on Mechanical Properties of Miura-ori Metamaterials [J]. Acta Armamentarii, 2024, 45(2): 618-627. |
[3] | ZHU Xiufang, ZHOU Hongyuan, ZHANG Hong, CHEN Xinmin. Low Speed Impact Resistance of Gradient Encapsulated Circuit Board Structure [J]. Acta Armamentarii, 2024, 45(11): 3879-3891. |
[4] | LIU Teng, ZHOU Xiongfei, WANG Chengquan, JING Lin. Wheel-rail Interaction Mechanism and Derailment Suppression Technology for Train Collision Accidents [J]. Acta Armamentarii, 2023, 44(S1): 67-78. |
[5] | LI Furong, RONG Jili, WANG Xi, CHEN Zichao, WEI Zhenqian, ZHAO Zitong. Research on Impact Resistance and Failure Modes of Pyramid Sandwich Panel Subjected to Underwater Explosion [J]. Acta Armamentarii, 2023, 44(7): 1954-1965. |
[6] | NIU Cao, GU Guangxin, ZHU Lei, XU Hongbin, LI Zhengyu, ZHANG Weihong, CHEN Yongwei, WANG Bo, SHI Jianxiong, LI Yizhe. Finite Element Structural Analysis and Topology Optimization of a Vehicle-borne Missile Launching Cradle [J]. Acta Armamentarii, 2023, 44(2): 437-451. |
[7] | GAO Jun-qiang, TANG Xia-qing, HUANG Xiang-yuan, CHENG Xu-wei. FEA Method for Analysis of SINS Error Caused by Vibration Isolation System [J]. Acta Armamentarii, 2016, 37(9): 1570-1577. |
[8] | XU Xiao, FAN Li-xia, WANG Ya-ping, DONG Xiao-bin. Trans-scale Polycrystalline Finite Element Simulation of Radial Forging Process for Barrel and Prediction of Texture [J]. Acta Armamentarii, 2016, 37(7): 1180-1186. |
[9] | YANG Qing-tao, BAI Han-chen, ZHANG Tao, YANG Juan, WANG Hui. Design and Response Characteristics Analysis of a Fast-response Sensor for Temperature and Heat Flux Measurement [J]. Acta Armamentarii, 2014, 35(6): 927-934. |
[10] | QIN Guo-hua, ZHANG Yun-jian, YE Hai-chao. A Neural Network-Based Prediction Method of Machining Deformation for Thin-walled Workpiece [J]. Acta Armamentarii, 2013, 34(7): 840-845. |
[11] | LIU Jian-ning, JIANG Jun-biao, SHI Shun-xiang, MA Jia-jun, GUO Qiang. Optimization Analysis of Frequency Stabilization Servo System of Prisms Laser Gyro [J]. Acta Armamentarii, 2013, 34(7): 821-827. |
[12] | HOU Hai-liang, ZHU Xi, LI Wei. Investigation on Bullet Proof Mechanism of Light Ceramic/Steel Composite Armor [J]. Acta Armamentarii, 2013, 34(1): 105-114. |
[13] | QU Kai, ZHANG Jie, ZHANG Xu-dong. Research on Effects of Ship Motion on Interface Fatigue Damage of Solid Rocket Motor [J]. Acta Armamentarii, 2012, 33(8): 986-990. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||