Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (9): 3004-3016.doi: 10.12382/bgxb.2023.0765
Previous Articles Next Articles
XIONG Ying, LI Xiaojian*(), FAN Zhiyou, LI Nan, WANG Biao, WANG Tiannan
Received:
2023-08-17
Online:
2023-11-15
Contact:
LI Xiaojian
CLC Number:
XIONG Ying, LI Xiaojian, FAN Zhiyou, LI Nan, WANG Biao, WANG Tiannan. Construction Method of Conducted Interference Prediction Model for High Power Electric Drive System of Armored Vehicle[J]. Acta Armamentarii, 2024, 45(9): 3004-3016.
Add to citation manager EndNote|Ris|BibTeX
技术指标 | 民用驱动电机 | 军用驱动电机 |
---|---|---|
额定功率/kW | 60~80 | ≥140 |
峰值功率/kW | 120~150 | ≥200 |
峰值扭矩/(N·m) | 200~1200 | ≥1200 |
额定母线电压VDC/V | 300~600 | 500~1200 |
Table 1 Comparison of technical parameters of military and commercial drive motors
技术指标 | 民用驱动电机 | 军用驱动电机 |
---|---|---|
额定功率/kW | 60~80 | ≥140 |
峰值功率/kW | 120~150 | ≥200 |
峰值扭矩/(N·m) | 200~1200 | ≥1200 |
额定母线电压VDC/V | 300~600 | 500~1200 |
寄生参数 | 取值 | 寄生参数 | 取值 | |
---|---|---|---|---|
CY/μF | 0.74 | Ce/pF | 370 | |
LY/nH | 143 | Cc/pF | 88 | |
CLink/μF | 925 | Cp/pF | 410 | |
LLink/nH | 9 | Cj/nF | 12 | |
LIGBT/nH | 27 |
Table 2 Parasitic parameter values in inverter circuits
寄生参数 | 取值 | 寄生参数 | 取值 | |
---|---|---|---|---|
CY/μF | 0.74 | Ce/pF | 370 | |
LY/nH | 143 | Cc/pF | 88 | |
CLink/μF | 925 | Cp/pF | 410 | |
LLink/nH | 9 | Cj/nF | 12 | |
LIGBT/nH | 27 |
参数 | 数值 | 参数 | 数值 | |
---|---|---|---|---|
持续功率/kW | 140 | 峰值功率/kW | 200 | |
持续扭矩/(N·m) | 1100 | 峰值扭矩/(N·m) | 2500 | |
额定转速/(r·min-1) | 1215 | 最高转速/(r·min-1) | 2700 |
Table 3 Basic parameters of motor
参数 | 数值 | 参数 | 数值 | |
---|---|---|---|---|
持续功率/kW | 140 | 峰值功率/kW | 200 | |
持续扭矩/(N·m) | 1100 | 峰值扭矩/(N·m) | 2500 | |
额定转速/(r·min-1) | 1215 | 最高转速/(r·min-1) | 2700 |
R1/Ω | L1/H | R2/Ω | C2/F | m | Rm1/Ω | Rm2/Ω | Lm/H | Cm/F |
---|---|---|---|---|---|---|---|---|
3 | 0.1072 | 134.7561 | 3.3864×10-5 | 8.7215×10-9 | ||||
7.5838 | 1.0893×10-7 | 3.4378×106 | 9.9736×10-9 | 4 | 9.3814 | 148.2797 | 1.3803×10-5 | 9.8771×10-10 |
5 | 0.5508 | -1.2617×103 | 8.8580×10-9 | 2.4590×10-10 | ||||
6 | -1.2344 | 721.9726 | 1.6976×10-7 | 8.2781×10-12 |
Table 4 Circuit parameters of single phase common mode impedance
R1/Ω | L1/H | R2/Ω | C2/F | m | Rm1/Ω | Rm2/Ω | Lm/H | Cm/F |
---|---|---|---|---|---|---|---|---|
3 | 0.1072 | 134.7561 | 3.3864×10-5 | 8.7215×10-9 | ||||
7.5838 | 1.0893×10-7 | 3.4378×106 | 9.9736×10-9 | 4 | 9.3814 | 148.2797 | 1.3803×10-5 | 9.8771×10-10 |
5 | 0.5508 | -1.2617×103 | 8.8580×10-9 | 2.4590×10-10 | ||||
6 | -1.2344 | 721.9726 | 1.6976×10-7 | 8.2781×10-12 |
R1/Ω | R2/Ω | C2/F | n | Rn1/Ω | Rn2/Ω | Ln/H | Cn/F |
---|---|---|---|---|---|---|---|
3 | 24.6039 | 833.3883 | 2.9362×10-4 | 6.9829×10-9 | |||
4 | 1.5962 | -28.7380 | 3.0657×10-6 | 1.5245×10-7 | |||
47.9964 | -48.3826 | -2.6092×10-8 | 5 | 30.4715 | 391.7894 | 8.5808×10-6 | 1.2820×10-9 |
6 | 0.446 | -0.4701 | -1.7044×10-10 | -8.0010×10-10 | |||
7 | -36.9038 | 113.7829 | 9.4583×10-8 | 1.20802×10-11 |
Table 5 Circuit parameters of single phase differential mode impedance
R1/Ω | R2/Ω | C2/F | n | Rn1/Ω | Rn2/Ω | Ln/H | Cn/F |
---|---|---|---|---|---|---|---|
3 | 24.6039 | 833.3883 | 2.9362×10-4 | 6.9829×10-9 | |||
4 | 1.5962 | -28.7380 | 3.0657×10-6 | 1.5245×10-7 | |||
47.9964 | -48.3826 | -2.6092×10-8 | 5 | 30.4715 | 391.7894 | 8.5808×10-6 | 1.2820×10-9 |
6 | 0.446 | -0.4701 | -1.7044×10-10 | -8.0010×10-10 | |||
7 | -36.9038 | 113.7829 | 9.4583×10-8 | 1.20802×10-11 |
电参数 | 释义 | 取值 |
---|---|---|
Rc1, Rc2, Rc3 | 单位电长度内导体电阻值 | Rc1 =Rc2 =Rc3=21.53mΩ/m |
Rsh1, Rsh2, Rsh3 | 单位电长度屏蔽层电阻值 | Rsh1 =Rsh2 =Rsh3=6.7mΩ/m |
Lc1, Lc2, Lc3 | 单位电长度内导体自感值 | Lc1=Lc2 =Lc3=942.96nH/m |
Lsh1, Lsh2, Lsh3 | 单位电长度屏蔽层自感值 | Lsh1=Lsh2 =Lsh3=846.97nH/m |
Mc1c2, Mc1c2, Mc1c3 | 单位电长度内导体间互感值 | Mc1c2=Mc2c3=640.25nH/m Mc1c3=546.02nH/m |
Msh1sh2, Msh1sh3, Msh2sh3 | 单位电长度屏蔽层间互感值 | Msh1sh2=Msh2sh3=640.25nH/m Msh1sh3=546.02nH/m |
Mc1sh1, Mc1sh2, Mc1sh3 Mc2sh1, Mc2sh2, Mc2sh3 Mc3sh1, Mc3sh2, Mc3sh3 | 单位电长度内导体与屏蔽层间互感值 | Mc1sh1=Mc2sh2 =Mc3sh3=846.97nH/m Mc1sh2=Mc2sh2=Mc2sh3=Mc3sh2=640.25nH/m Mc1sh3=Mc3sh1=546.02nH/m |
Csh1, Csh2, Csh3 | 单位电长度屏蔽层对地电容值 | Csh1=Csh2 =Csh3=492.47pF/m |
Csh1sh2, Csh1sh3, Csh2sh3 | 单位电长度屏蔽层间互容值 | Csh1sh2=Csh2sh3=20.63pF/m Csh1sh3=1.65nH/m |
Cc1sh1, Cc2sh2, Cc3sh3 | 单位电长度内导体与屏蔽层互容值 | Cc1sh1=Cc2sh2=Cc3sh3=446.46pF/m |
Table 6 Symbolic meaning and values of electrical parameters in the equivalent model of transmission lines
电参数 | 释义 | 取值 |
---|---|---|
Rc1, Rc2, Rc3 | 单位电长度内导体电阻值 | Rc1 =Rc2 =Rc3=21.53mΩ/m |
Rsh1, Rsh2, Rsh3 | 单位电长度屏蔽层电阻值 | Rsh1 =Rsh2 =Rsh3=6.7mΩ/m |
Lc1, Lc2, Lc3 | 单位电长度内导体自感值 | Lc1=Lc2 =Lc3=942.96nH/m |
Lsh1, Lsh2, Lsh3 | 单位电长度屏蔽层自感值 | Lsh1=Lsh2 =Lsh3=846.97nH/m |
Mc1c2, Mc1c2, Mc1c3 | 单位电长度内导体间互感值 | Mc1c2=Mc2c3=640.25nH/m Mc1c3=546.02nH/m |
Msh1sh2, Msh1sh3, Msh2sh3 | 单位电长度屏蔽层间互感值 | Msh1sh2=Msh2sh3=640.25nH/m Msh1sh3=546.02nH/m |
Mc1sh1, Mc1sh2, Mc1sh3 Mc2sh1, Mc2sh2, Mc2sh3 Mc3sh1, Mc3sh2, Mc3sh3 | 单位电长度内导体与屏蔽层间互感值 | Mc1sh1=Mc2sh2 =Mc3sh3=846.97nH/m Mc1sh2=Mc2sh2=Mc2sh3=Mc3sh2=640.25nH/m Mc1sh3=Mc3sh1=546.02nH/m |
Csh1, Csh2, Csh3 | 单位电长度屏蔽层对地电容值 | Csh1=Csh2 =Csh3=492.47pF/m |
Csh1sh2, Csh1sh3, Csh2sh3 | 单位电长度屏蔽层间互容值 | Csh1sh2=Csh2sh3=20.63pF/m Csh1sh3=1.65nH/m |
Cc1sh1, Cc2sh2, Cc3sh3 | 单位电长度内导体与屏蔽层互容值 | Cc1sh1=Cc2sh2=Cc3sh3=446.46pF/m |
[1] |
熊瑛, 李小健, 周伟, 等. 装甲车辆三相同步电机宽频电磁兼容模型构建方法[J]. 兵工学报, 2022, 43(7):1467-1477.
doi: 10.12382/bgxb.2021.0387 |
doi: 10.12382/bgxb.2021.0387 |
|
[2] |
|
[3] |
何谷青. 大功率电驱系统3D集成式共模EMI滤波器的最优化设计[D]. 西安: 西安电子科技大学, 2021.
|
|
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
翟丽, 杨霜洁, 胡桂兴, 等. 电动汽车电机驱动系统传导电磁干扰建模[J]. 北京理工大学学报, 2022, 42(8): 824-833.
|
|
|
[9] |
|
[10] |
|
[11] |
周天翔, 陈恒林, 袁文琦, 等. 基于高通滤波测试的逆变器端口共模干扰建模[J]. 中国电机工程学报, 2022, 42(13): 4686-4695.
|
|
|
[12] |
袁文琦, 李文鑫, 许哲翔, 等. 用于EMI 仿真的牵引电机高频阻抗模型[J]. 电力电子技术, 2021, 55(8):54-57.
|
|
|
[13] |
|
[14] |
|
[15] |
|
[16] |
罗广孝, 齐磊, 张卫东, 等. 大功率沟槽栅场终止IGBT器件物理模型参数提取的新方法[J]. 中国电机工程学报, 2018, 38(20):6062-6070.
|
|
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
赵轩, 李美莹, 余强, 等. 电动汽车动力锂电池状态估计综述[J]. 中国公路学报, 2023, 36(6): 254-283.
doi: 10.19721/j.cnki.1001-7372.2023.06.021 |
doi: 10.19721/j.cnki.1001-7372.2023.06.021 |
|
[25] |
|
[26] |
|
[1] | XIONG Guangming, LUO Zhen, SUN Dong, TAO Junfeng, TANG Zeyue, WU Chao. Object Detection and Tracking for Unmanned Vehicles Based on Fusion of Infrared Camera and MMW Radar in Smoke-obscured Environment [J]. Acta Armamentarii, 2024, 45(3): 893-906. |
[2] | ZHANG Faping, ZHANG Shuchang, WU Kai, ZHANG Yunhe, YAN Yan. Dynamics Parameter Optimization for Tracked Vehicle Based on Surrogate Model Evolution [J]. Acta Armamentarii, 2023, 44(1): 27-39. |
[3] | LI Lei, WANG Yanwei, DANG Li, WANG Huisi, DU Fang, TAO Bowen, HU Xiang, ZHOU Shuiping, GU Jian. Hygroscopic Properties of Ammonium Dinitroamide-based High Energy Propellant [J]. Acta Armamentarii, 2022, 43(7): 1614-1619. |
[4] | FENG Ka-li, LI An, QIN Fang-jun, LI Feng. Temperature Error Compensation Method Based on Adaptive Neuro Fuzzy Inference for Fiber-optic Gyro [J]. Acta Armamentarii, 2016, 37(4): 641-647. |
[5] | ZHANG Bin, LI Jia-lu, ZHAO Dong-e, LIU Ji, LI Yuan, SHI Xiao-jun. Signal Processing of Laser Screen Fragments Velocity Measurement Based on Wavelet Transform and Correlation Analysis [J]. Acta Armamentarii, 2016, 37(3): 489-495. |
[6] | QIN Dong-ze. Relevant Concepts of Cluster Submunition Fuze and“Three-self ” Combined Design Method [J]. Acta Armamentarii, 2016, 37(2): 239-244. |
[7] | LUO Qing-guo, YIN Hong-tao, NING Xing-xing. A Design Method of Cooling System Principle Scheme Based on Directed Graph [J]. Acta Armamentarii, 2016, 37(1): 10-16. |
[8] | GAO Qing-wei, ZENG Jia-you, WU Fang, ZHANG Qian-yu. Influence of Alignment of Moving Base for INS on Acquisition Probability of Homing Radar for Ship-to-ship Missile [J]. Acta Armamentarii, 2016, 37(1): 56-63. |
[9] | HU Song-wei. Converting and Evaluation Method for Submarine-launched Interior Ballistic Functional [J]. Acta Armamentarii, 2015, 36(9): 1647-1653. |
[10] | HUANG Fan-tai, ZHANG Lin, ZHU Shun-guan. PreparationPerformance and Long-term Storage of Nano Al/Bi2O3 [J]. Acta Armamentarii, 2015, 36(8): 1430-1436. |
[11] | SHI Xiao-bin, GU Hong, SU Wei-min, DONG Tian-qi, CHEN Xu-long. Study of Target Threat Assessment for Ground Surveillance Radar [J]. Acta Armamentarii, 2015, 36(6): 1128-1135. |
[12] | LIANG Zhi-qiang, MA Li-ping, WANG Xi-bin, XIE Li-jing, ZHAO Wen-xiang, YAO Hong-min. The Effect of Pulsed Magnetic Field on Friction and Wear Properties of High Speed Steel Tool Materials [J]. Acta Armamentarii, 2015, 36(5): 904-910. |
[13] | SHANG Wei, TANG Sheng-jing, GUO Jie, MA Yue-yue, ZHANG Yao. Design of Adaptive Fuzzy Dynamic Surface Sliding-mode Guidance Law Considering Autopilot Lag [J]. Acta Armamentarii, 2015, 36(4): 660-667. |
[14] | RUI Xiao-ting, FENG Bin-bin, WANG Yan, LI Chao, CHEN Tao. Research on Evaluation Method for Launch Safety of Propellant Charge [J]. Acta Armamentarii, 2015, 36(1): 1-11. |
[15] | CHEN Peng-yuan, ZHANG Lin, ZHU Shun-guan, CHENG Guang-bin. The Crystal Structure and Theoretical Study of Styphnic/14-dioxane Solvate [J]. Acta Armamentarii, 2014, 35(10): 1569-1574. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||