[1] |
VOLAND R T, HUEBNER L D, MCCLINTON C R. X-43Ahypersonic vehicle technology development[J]. Acta Astronautica, 2006, 59(1-5):181-191.
|
[2] |
刘世杰, 覃慧, 林志勇, 等. 连续旋转爆震波细致结构及自持机理[J]. 推进技术, 2011, 32(3):431-436.
|
|
LIU S J, QIN H, LIN Z Y, et al. Detailed structure and propagating mechanism research on continuous rotating detonation wave[J]. Journal of Propulsion Technology, 2011, 32(3):431-436. (in Chinese)
|
[3] |
冯文康, 郑权, 汪小卫, 等. 当量比对煤油-空气两相旋转爆轰波的影响[J]. 兵工学报, 2022, 43(6):1304-1315.
doi: 10.12382/bgxb.2021.0352
|
|
FENG W K, ZHENG Q, WANG X W, et al. Effect of equivalent ratio on two-phase rotating detonation wave of kerosene-air[J]. Acta Armamentarii, 2022, 43(6):1304-1315. (in Chinese)
doi: 10.12382/bgxb.2021.0352
|
[4] |
KRISHNAN V. Propulsion from the pulse detonation of solid propellant pellet-projectiles[C]//Proceedings of the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.Sacramento,CA,US:AIAA,2006:4628-4633.
|
[5] |
姜宗林, 滕宏辉. 气相规则胞格爆轰波起爆与传播统一框架的几个关键基础问题研究[J]. 中国科学:物理学力学天文学, 2012, 42(4):421-435.
|
|
JIANG Z L, TENG H H. Research on some fundamental problems of the universal framework for regular gaseous detonation initiation and propagation[J]. Science China Physics, Mechanics& Astronomy, 2012, 42(4):421-435. (in Chinese)
|
[6] |
SALVADORI M, DUNN I B, SOSA J, et al. Numerical investigation of shock-induced combustion of coal-h2-air mixtures in a unwrapped non-premixed detonation channel[C]//Proceedings of AIAA Scitech 2020 Forum. Orlando, FL, US: AIAA, 2020:1-18.
|
[7] |
ZHANG F, FROST D L, THIBAULT P A, et al. Explosive dispersal of solid particles[J]. Shock Waves, 2001, 10(6): 431-443.
|
[8] |
GOTTIPARTHI K C, MENON S. A study of interaction of clouds of inert particles with detonation in gases[J]. Combustion Science and Technology, 2012, 184(3):406-433.
|
[9] |
ZHU W C, WANG Y H, WANG J P. Flow field of a rotating detonation engine fueled by carbon[J]. Physics of Fluids, 2022, 34(7):073311.
|
[10] |
VEYSSIERE B. Detonations in gas-particle mixtures[J]. Journal of Propulsion and Power, 2006, 22(6): 1269-1288.
|
[11] |
ZHANG F, GERRARD K, RIPLEY R C. Reaction mechanism of aluminum-particle-air detonation[J]. Journal of Propulsion and Power, 2009, 25(4): 845-858.
|
[12] |
刘龙, 夏智勋, 黄利亚. 气相氛围中悬浮粉末燃料爆震燃烧研究进展[J]. 宇航学报, 2018, 39(3):239-248.
|
|
LIU L, XIA Z X, HUANG L Y. Progress in detonation combustion of powder fuel suspended in gaseous atmosphere[J]. Journal of Astronautics, 2018, 39(3):239-248. (in Chinese)
|
[13] |
LEE J H S. Initiation of gaseous detonation[J]. Annual Review of Physical Chemistry, 1977, 28(1): 75-104.
|
[14] |
姜宗林, 滕宏辉, 刘云峰. 气相爆轰物理的若干研究进展[J]. 力学进展, 2012, 42(2):129-140.
|
|
JIANG Z L, TENG H H, LIU Y F. Some research progress on gaseous detonation physics[J]. Advances in Mechanics, 2012, 42(2):129-140. (in Chinese)
|
[15] |
LEE J H S. The detonation phenomenon[M]. Cambridge, UK: Cambridge University Press, 2008:297-298.
|
[16] |
ZHANG F, GROENIG H. Spin detonation in reactive particles-oxidizing gas flow[J]. Physics of Fluids A: Fluid Dynamics, 1991, 3(8): 1983-1990.
|
[17] |
EMELYANOV V N, VOLKOV K N. Numerical simulation of laser-induced detonation in mixture of hydrogen with suspended metal particles[J]. International Journal of Hydrogen Energy, 2014, 39(11): 6222-6232.
|
[18] |
TULIS A J, SELMAN J R. Detonation tube studies of aluminum particles dispersed in air[C]//Proceedings of the 19th Symposium on Combustion. Haifa, Israel:Elsevier, 1982: 655-663.
|
[19] |
ZHANG F. Shock wave science and technology reference library[M]. Berlin, Germany: Springer, 2009: 128.
|
[20] |
STRAUSS W A. Investigation of the detonation of aluminum powder-oxygen mixtures[J]. AIAA Journal, 1968, 6(9): 1753-1756.
|
[21] |
BORISOV A A, KHASAINOV B A, SANEEV E L, et al. On the detonation of aluminum suspensions in air and in oxygen[J]. Dynamic Structure of Detonation in Gaseous and Dispersed Media, 1991,5: 215-253.
|
[22] |
KIVERIN A, MEDVEDKOV I, YAKOVENKO I, et al. Three-dimensional structure of freely-propagating flame prior to deflagration-to-detonation transition[J]. Acta Astronautica, 2023, 204: 686-691.
|
[23] |
TULIS A J. On the unconfined detonation of aluminum powder-air clouds[C]//Proceedings of the 1st International Colloquium on Explosibility of Industrial Dusts. Baranow, Poland: ICEID, 1984:178-186.
|
[24] |
VEYSSIERE B, DESBORDES D, LEE J H S. Preliminary experiments for direct initiation of spherical detonations in two-phase mixtures (oxygen-solid particles)[J]. Archivum Combustionis, 1987, 7(1/2): 185-196.
|
[25] |
VEYSSIERE B, KHASAINOV B A, STURTZER C A, et al. Detonability of aluminum-oxygen suspensions[C]//Proceedings of the 24th International Colloquium on the Dynamics of Explosions and Reactive Systems.Taipei, Taiwan, China: ICDERS, 2013.
|
[26] |
VEYSSIERE B, KHASAINOV B A, BRIAND A. Investigation of detonation initiation in aluminum suspensions[J]. Shock Waves, 2008, 18(4): 307-315.
|
[27] |
LEE J H S. Dynamic parameters of gaseous detonations[J]. Annual Review of Fluid Mechanics, 1984, 16(1): 311-336.
|
[28] |
ZHANG F. Shock wave science and technology reference library[M]. Berlin, Germany: Springer, 2009: 126-128.
|
[29] |
INGIGNOLI W, VEYSSIERE B, KHASAINOV B A. Study of detonation initiation in unconfined aluminum dust clouds[J]. Gaseous and Heterogeneous Detonations, 1999: 337-350.
|
[30] |
ZHANG F, GERRARD K B, RIPLEY R C, et al. Unconfined aluminum particles-air detonation[C]// Proceedings of the 26th International Symposium on Shock Waves. Goettingen, Germany: ISSW, 2007:395-400.
|
[31] |
ZHANG F, GROENIG H, VAN DE VEN A. DDT and detonation waves in dust-air mixtures[J]. Shock Waves, 2001,11:53-71.
|
[32] |
ZHANG F, YOSHINAKA A, RIPLEY R C. Unconfined hybrid detonation in gas-particle flow[C]//Proceedings of the 30th International Symposium on Shock Waves.Tel-Aviv, Israel: ISSW, 2015.
|
[33] |
ROY G D, FROLOV S M, BORISOV A A, et al. Pulse detonation propulsion: challenges, current status, and future perspective[J]. Progress in Energy and Combustion Science, 2004, 30(6):545-672.
|
[34] |
罗永晨, 续晗, 张锋, 等. 乙烯对煤粉-氧气爆轰波起爆特性影响机制的实验研究[J]. 兵工学报, 2024, 45(3):754-762.
doi: 10.12382/bgxb.2022.0600
|
|
LUO Y C, XU H, ZHANG F, et al. Experimental study on the effect of ethylene on the detonation onset of coal/oxygen mixture[J]. Acta Armamentarii, 2024, 45(3):754-762. (in Chinese)
|
[35] |
ZHANG F, YOSHINAKA A, RIPLEY R. Unconfined hybrid detonation waves[C]//Proceedings of the 22nd International Colloquium on the Dynamics of Explosions and Reactive Systems. Minsk, Belarus: ICDERS, 2009.
|
[36] |
PINAEV A V, PINAEV P A. Detonation waves in methane/hydrogen/oxygen/coal suspension systems[J]. Combustion, Explosion, and Shock Waves, 2022, 58(4):475-480.
|
[37] |
张义宁, 王家骅, 张靖周. 多循环吸气式脉冲爆震发动机推力直接测量[J]. 推进技术, 2006, 27(5):459-462.
|
|
ZHANG Y N, WANG J H, ZHANG J Z. Impulse of cyclic air-breathing pulse detonation engine[J]. Journal of Propulsion Technology, 2006, 27(5):459-462. (in Chinese)
|
[38] |
ZHANG F. Shock wave science and technology reference library[M].Berlin, Germany:Springer, 2009: 108-117.
|
[39] |
ZHANG F, THIBAULT P A, MURRAY S B. Transition from deflagration to detonation in an end multiphase slug[J]. Combustion and Flame, 1998, 114(1/2):13-25.
|
[40] |
MURRAY S B, ZHANG F, MOEN I O, et al. On the potential of RDX dust detonations for minefield breaching[C]//Proceedings of the 18th International Colloquium on the Dynamics of Explosions and Reactive Systems. Seattle, WA, US:ICDERS, 2001.
|
[41] |
ZHANG F, GROENIG H. Transition to detonation in corn starch dust-oxygen and-air mixtures[J]. Combustion and Flame, 1991, 86(1/2):21-32.
|
[42] |
李树砖. 气/固/液多相燃料空气混合物DDT过程研究[D]. 北京: 北京理工大学, 2017.
|
|
LI S Z. Study on deflagration to detonation transition process of gas/solid/liquid multiphase fuel mixtures[D]. Beijing: Beijing Institute of Technology, 2017. (in Chinese)
|
[43] |
LIU Q M, LI X D, BAI C. H Deflagration to detonation transition in aluminum dust-air mixture under weak ignition condition[J]. Combustion and Flame, 2009, 156(4): 914-921.
|
[44] |
ZHANG F, MURRAY S B, GERRARD K B. Aluminum particles-air detonation at elevated pressures[J]. Shock Waves, 2006, 15(5): 313-324.
|
[45] |
WOLINSKI M, TEODORCZYK A, WOLANSKI P, et al. Hybrid detonations in oats dust clouds in methane-air mixtures[J]. Combustion Science and Technology, 1996, 120(1-6):39-53.
|
[46] |
ZHOU Q X, HUANG J, HAN W H, et al. Initiation and propagation of one-dimensional detonations in aluminum-particle/C2H2/air system[J]. Physics of Fluids, 2022, 34(12): 126109.
|
[47] |
LIU Q M, BAI C H, JIANG L, et al. Deflagration-to-detonation transition in nitromethane mist/aluminum dust/air mixtures[J]. Combustion and Flame, 2010, 157(1): 106-117.
|
[48] |
NGUYEN V B, LI J, CHANG P H, et al. On the deflagration-to-detonation transition(DDT) process with added energetic solid particles for pulse detonation engines (PDE)[J]. Shock Waves, 2018, 28:1143-1167.
|
[49] |
PAPALEXANDRIS M V. Numerical simulation of detonations in mixtures of gases and solid particles[J]. Journal of Fluid Mechanics, 2004, 507:95-142.
|
[50] |
ZHANG F, MURRAY S B, GERRARD K B. Hybrid detonation waves[C]//Proceedings of International Colloquium on the Dynamics of Explosions and Reactive Systems. Montreal, Canada:ICDERS, 2005.
|
[51] |
KOROBEINIKOV V P. Formation of zones with high particle concentrations in dusty gas[J]. Progress in Astronautics and Aeronautics:Dynamics of Deflagrations and Reactive Systems: Heterogeneous Combustion, 1991, 134: 287.
|
[52] |
CARVEL R O, THOMAS G O, BROWN C J. Some observations of detonation propagation through a gas containing dust particles in suspension[J]. Shock Waves, 2003, 13(2):83-89.
|
[53] |
FEDOROV A V, KHMEL T A, FOMIN V M. Non-equilibrium model of steady detonations in aluminum particles-oxygen suspensions[J]. Shock Waves, 1999,9: 313-318.
|
[54] |
FEDOROV A V, KHMEL T A. Structure and initiation of plane detonation waves in a bi-disperse gas suspension of aluminum particles[J]. Combustion, Explosion, and Shock Waves, 2008, 44: 163-171.
|
[55] |
VEYSSIERE B. Double-front detonations in gas-solid particles mixtures[J]. Dynamics of Shock Waves, Explosions, and Detonations, Progress in Astronautics and Aeronautics, 1984, 94:264-276.
|
[56] |
VEYSSIERE B, BOURIANNES R, MANSON M. Detonation characteristics of two ethylene-oxygen-nitrogen mixtures containing aluminum particles in suspension[J]. Gas Dynamics of Detonations and Explosions, Progress in Astronautics and Aeronautics, 1981, 74:423-438.
|
[57] |
KHASAINOV A. Steady, plane, double-front detonations in gaseous detonable mixtures containing a suspension of aluminum particles[J]. Dynamics of Explosions, Progress in Astronautics and Aeronautics, 1988, 114:284-299.
|
[58] |
KHASAINOV B A, VEYSSIERE B. Initiation of detonation regimes in hybrid two-phase mixtures[J]. Shock Waves, 1996, 6:9-15.
|
[59] |
AFANASIEVA E A, LEVIN V A, TUNIK Y V. Mu.pngront combustion of two-phase medium[J]. Shock Waves, Explosions, and Detonations:AIAA Progress in Astronautics and Aeronautics, 1983,84: 394-413.
|
[60] |
VEYSSIERE B. Structure of the detonations in gaseous mixtures containing aluminum particles in suspension[J]. Progress in Astronautics and Aeronautics, 1986, 114:170-185.
|
[61] |
VEYSSIERE B, KHASAINOV B A. A model for steady, plane, double-front detonations(DFD) in gaseous explosive mixtures with aluminum particles in suspension[J]. Combustion and Flame, 1991, 85(1/2):241-253.
|
[62] |
VEYSSIERE B, KHASAINOV B A. Structure and multiplicity of detonation regimes in heterogeneous hybrid mixtures[J]. Shock Waves, 1995, 4:171-186.
|
[63] |
ZHANG F, MURRAY S B, GERRARD K B. Hybrid detonation waves in heterogeneous explosive mixtures[C]//Proceedings of the 18th International Symposium on Military Aspects of Blast and Shock.Bad Reichenhall, Germany: MABS, 2004:75.1-75.4.
|
[64] |
VEYSSIERE B, KHASAINOV B A, WALTON P, et al. Performance of propellant decomposition products as fuel in an airbreathing PDE[J]. Shock Waves, 2006, 16: 149-156.
|
[65] |
VEYSSIERE B, KHASAINOV B A, WALTON P, et al. Performance of propellant decomposition products as fuel in airbreathing PDE[C]//Proceedings of the 20th International Colloquium on the Dynamics of Explosions and Reactive Systems. Montreal, Canada:ICDERS, 2005.
|
[66] |
ZHANG F. Shock wave science and technology reference library[M].Berlin, Germany:Springer, 2009: 146-147.
|
[67] |
VEYSSIERE B, INGIGNOLI W. Existence of the detonation cellular structure in two-phase hybrid mixtures[J]. Shock Waves, 2003, 12(4): 291-299.
|
[68] |
FEDOROV A V, KHMEL’T A. Numerical simulation of formation of cellular heterogeneous detonation of aluminum particles in oxygen[J]. Combustion, Explosion and Shock Waves, 2005, 41: 435-448.
|
[69] |
BRIAND A, VEYSSIERE B, KHASAINOV B A. Modelling of detonation cellular structure in aluminum suspensions[J]. Shock Waves, 2010, 20(6): 521-529.
|
[70] |
杨晋朝, 夏智勋, 胡建新, 等. 粉末燃料高效装填技术研究[J]. 固体火箭技术, 2013, 36(1):37-44.
|
|
YANG J Z, XIA Z X, HU J X, et al. Study on high efficiency packing technology of powdered fuel[J]. Journal of Solid Rocket Technology, 2013, 36(1):37-44. (in Chinese)
|
[71] |
FEDOROV A V, KHMEL T A. Structure and initiation of plane detonation waves in a bi-disperse gas suspension of aluminum particles[J]. Combustion, Explosion, and Shock Waves, 2008, 44(2):163-171.
|
[72] |
FEDOROV A V, KHMEL T A. Cellular detonations in bi-dispersed gas-particle mixtures[J]. Shock Waves, 2008, 18:277-280.
|
[73] |
FEDOROV A V, KHMEL T A. Formation and degeneration of cellular detonation in bi-disperse gas suspensions of aluminum particles[J]. Combustion, Explosion, and Shock Waves, 2008, 44: 343-353.
|
[74] |
LAVRUK S A, FEDOROV A V, KHMEL T A. Cellular detonation propagation and degeneration in bi-disperse gas suspensions of micron-and nano-sized aluminum particles[J]. Shock Waves, 2020, 30:273-286.
|
[75] |
HOSODA H, HAYASHI A K, YAMADA E. Numerical analysis on combustion characteristics of nano aluminum particle-oxygen two-phase detonation[J]. Science and Technology of Energetic Materials, 2013, 74(2):34-39.
|
[76] |
KHMEL T, LAVRUK S. Detonation flows in aluminum particle gas suspensions, inhomogeneous in concentrations[J]. Journal of Loss Prevention in the Process Industries, 2021, 72:104522.
|
[77] |
KHMEL T A, LAVRUK S A. Modeling of cellular detonation in gas suspensions of submicron aluminum particles with different distributions of concentration[J]. Combustion, Explosion, and Shock Waves, 2022, 58(3): 253-268.
|
[78] |
TSUBOI N, HAYASHI A K, MATSUMOTO Y. Three-dimensional parallel simulation of cornstarch-oxygen two-phase detonation[J]. Shock Waves, 2000, 10: 277-285.
|
[79] |
ZHANG F, GREILICH P, GROENIG H. Propagation mechanism of dust detonations[J]. Shock Waves, 1992, 2(2): 81-88.
|
[80] |
KHASAINOV B, VIROT F, VEYSSIERE B. Three-dimensional cellular structure of detonations in suspensions of aluminum particles[J]. Shock Waves, 2013, 23(3): 271-282.
|
[81] |
DESBORDES D. Transmission of overdriven plane detonations-critical diameter as a function of cell regularity and size[J]. Dynamics of Explosions, 1988,114: 170-185.
|
[82] |
LAMOUREUX N, MATIGNON C, STURTZER M O, et al. Interpretation of the double cellular structure of detonation in gaseous nitromethane[J]. Comptes Rendus de l’Academie des Sciences Serie II Fascicule b-Mecanique, 2001, 329(9): 687-692.
|
[83] |
PRESLES H N, DESBORDES D, GUIRARD M, et al. Gaseous nitromethane and nitromethane-oxygen mixtures: a new detonation structure[J]. Shock Waves, 1996, 6:111-114.
|
[84] |
STURTZER M O, LAMOUREUX N, MATIGNON C, et al. On the origin of the double cellular structure of the detonation in gaseous nitromethane and its mixtures with oxygen[J]. Shock Waves, 2005, 14(1/2): 45-51.
|
[85] |
LIU L J, ZHANG Q, SHEN S L, et al. Evaluation of detonation characteristics of aluminum/JP-10/air mixtures at stoichiometric concentrations[J]. Fuel, 2016, 169: 41-49.
|
[86] |
张锋, 罗永晨, 肖博文, 等. 不同物理性质无烟煤粉在乙烯/氧气氛围下爆轰波传播特性实验研究[J]. 兵工学报, 2024, 45(5):1663-1672.
doi: 10.12382/bgxb.2023.0022
|
|
ZHANG F, LUO Y C, XIAO B W, et al. Experimental study of detonation wave propagation characteristics of anthracite pulverized coal with different physical properties under ethylene/oxygen atmosphere[J]. Acta Armamentarii, 2024, 45(5):1663-1672. (in Chinese)
doi: 10.12382/bgxb.2023.0022
|
[87] |
ZHANG B, SHAHSAVARI M, CHEN J Y, et al. The propagation characteristics of particle-laden two-phase detonation waves in pyrolysis mixtures of C (s)/H2/CO/CH4/O2/N2[J]. Aerospace Science and Technology, 2022, 130: 107912.
|
[88] |
PINAEV A V. Combustion and detonation waves in methane mixtures with suspensions of fine coal particles[J]. Journal of Physics: Conference Series, 2019, 1382(1): 012096.
|
[89] |
PINAEV A V, PINAEV P A. Combustion and detonation waves in gas mixtures of CH4/Air, CH4/O2, and O2/Coal dust[J]. Combustion, Explosion, and Shock Waves, 2020, 56(6): 670-681.
|
[90] |
PAPALEXANDRIS M V. Influence of inert particles on the propagation of multidimensional detonation waves[J]. Combustion and Flame, 2005, 141(3): 216-228.
|
[91] |
刘世杰. 连续旋转爆震波结构、传播模态及自持机理研究[D]. 长沙: 国防科学技术大学, 2012.
|
|
LIU S J. Investigations on the structure, rotating mode and lasting mechanism of continuous rotating detonation wave[D]. Changsha: National University of Defense Technology, 2012. (in Chinese)
|
[92] |
范宝春, 张旭东, 潘振华, 等. 用于推进的三种爆轰波的结构特征[J]. 力学进展, 2012, 42(2):162-169.
|
|
FAN B C, ZHANG X D, PAN Z H, et al. Fundamental characteristics of three types of detonation waves utilized in propulsion[J]. Advances in Mechanics, 2012, 42(2):162-169. (in Chinese)
|
[93] |
范育新, 王家骅, 李建中, 等. 脉冲爆震发动机气动阀性能分析[J]. 航空动力学报, 2007, 22(1):142-149.
|
|
FAN Y X, WANG J H, LI J Z, et al. Performance analysis of aero-valve impulse detonation engine[J]. Journal of Aerospace Power, 2007, 22(1):142-149. (in Chinese)
|
[94] |
程晓军, 范育新, 蔡迪, 等. 乙烯和汽油多循环脉冲爆震发动机起爆特性比较[J]. 航空动力学报, 2013, 28(10):2276-2283.
|
|
CHENG X J, FAN Y X, CAI D, et al. Comparative ignition characteristics of ethylene and gasoline in multi-cycle pulse detonation engine[J]. Journal of Aerospace Power, 2013, 28(10): 2276-2283. (in Chinese)
|
[95] |
王可, 范玮, 严宇, 等. 双管脉冲爆震火箭发动机实验研究[J]. 推进技术, 2012, 33(1):116-120.
|
|
WANG K, FAN W, YAN Y, et al. Experimental investigations on a dual-tube pulse detonation rocket engine[J]. Journal of Propulsion Technology, 2012, 33(1): 116-120. (in Chinese)
|
[96] |
MA J Z, LUAN M Y, XIA Z J, et al. Recent progress, development trends, and consideration of continuous detonation engines[J]. AIAA Journal, 2020, 58(12):4976-5035.
|
[97] |
张义宁, 王家骅, 张靖周.频率30-50 Hz两相脉冲爆震发动机研究[J]. 航空学报, 2006, 27(6):993-997.
|
|
ZHANG Y N, WANG J H, ZHANG J Z. Investigation on two phase pulse detonation engine at the frequency 30-50Hz[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(6):993-997. (in Chinese)
|
[98] |
韦伟. 铝粉燃料PDE爆轰特性的理论与实验研究[D]. 南京: 南京理工大学, 2019.
|
|
WEI W. Theoretical and experimental studies on detonation characteristics of aluminum fuel pulse detonation engine[D]. Nanjing: Nanjing University of Science and Technology, 2019. (in Chinese)
|
[99] |
WU W B, WANG Y N, WU K W, et al. Experimental evaluation of aluminum powder fuel in a hydrogen/oxygen detonation tube[J]. International Journal of Hydrogen Energy, 2023, 48(62): 24089.
|
[100] |
VASILEV A A. Characteristics of combustion and detonation of methane-coal mixtures[J]. Combustion, Explosion, and Shock Waves, 2013, 49: 424-434.
|
[101] |
BLUNCK D L, APTE S, NIEMEYER K. Pulse detonation engine for advanced oxy-combustion of coal-based fuel for direct power extraction applications[R]. Corvallis,OR, US: Oregon State University, 2021.
|
[102] |
董新刚, 霍东兴, 张强, 等. 粉末发动机技术研究现状及展望[J]. 固体火箭技术, 2021, 44(2):166-178.
|
|
DONG X G, HUO D X, ZHANG Q, et al. Research progresses and prospect of powdered fuel engine technology[J]. Journal of Solid Rocket Technology, 2021, 44(2):166-178. (in Chinese)
|
[103] |
BYKOVSKII F A, ZHDAN S A, VEDERNIKOV E F, et al. Continuous and pulsed detonation of a coal-air mixture[J]. Doklady Physics, 2010, 55(3):142-144.
|
[104] |
BYKOVSKII F A, ZHDAN S A, VEDERNIKOV E F, et al. Detonation of a coal-air mixture with addition of hydrogen in plane-radial vortex chambers[J]. Combustion, Explosion, and Shock Waves, 2011, 47:473-482.
|
[105] |
BYKOVSKII F, ZHDAN S, VEDERNIKOV E, et al. Detonation combustion of coal[J]. Combustion, Explosion, and Shock Waves, 2012, 48:203-208.
|
[106] |
BYKOVSKII F A, ZHDAN S A, VEDERNIKOV E F, et al. Continuous spin detonation of a coal-air mixture in a flow-type plane-radial combustor[J]. Combustion, Explosion, and Shock Waves, 2013, 49:705-711.
|
[107] |
BYKOVSKII F A, ZHDAN S A, VEDERNIKOV E F, et al. Detonation burning of anthracite and lignite particles in a flow-type radial combustor[J]. Combustion, Explosion, and Shock Waves, 2016, 52:703-712.
|
[108] |
BYKOVSKII F A, VEDERNIKOV E F, ZHOLOBOV Y A. Detonation combustion of lignite with titanium dioxide and water additives in air[J]. Combustion, Explosion, and Shock Waves, 2017, 53: 453-460.
|
[109] |
XU H, NI X D, SU X J, et al. Experimental investigation on the application of the coal powder as fuel in a rotating detonation combustor[J]. Applied Thermal Engineering, 2022, 213(11): 118642.
|
[110] |
DUNN I, FLORES W, MORALES A, et al. Carbon-based multi-phase rotating detonation engine[J]. Journal of Energy Resources Technology, 2022, 144(4): 042101.
|
[111] |
DUNN I B, MALIK V, AHMED K A, et al. Evidence of carbon driven detonation waves within a rotating detonation engine[C]//Proceedings of AIAA Scitech 2021 Forum. Reston, VA, US: AIAA, 2021: 1026.
|
[112] |
DUNN I B, MALIK V, FLORES W, et al. Experimental and theoretical analysis of carbon driven detonation waves in a heterogeneously premixed rotating detonation engine[J]. Fuel, 2021, 302: 121128
|
[113] |
BURKE R F, REZZAG T, AHMED K A. Sustainable particles seeding in air-breathing rotating detonation engine[C]//Proceedings of AIAA Scitech 2021 Forum. Reston, VA, US: AIAA, 2021: 0556.
|
[114] |
BURKE R F, REZZAG T, AHMED K. Carbon and hydrocarbon particle seeding in air-breathing rotating detonation engine[J]. Journal of Engineering for Gas Turbines and Power, 2022, 144(1): 011013.
|
[115] |
NI X D, XU H, SU X J, et al. Effects of different physical properties of anthracite powder fuel on detonation characteristics of a rotating detonation engine[J]. Physics of Fluids, 2023, 35(5): 053325.
|
[116] |
续晗, 罗永晨, 倪晓冬, 等. 铝粉燃料连续旋转爆轰发动机工作特性[J]. 兵工学报, 2022, 43(5):1046-1053.
doi: 10.12382/bgxb.2022.0002
|
|
XU H, LUO Y C, NI X D, et al. Operating characteristics of aluminum powder rotating detonation engine[J]. Acta Armamentarii, 2022, 43(5):1046-1053. (in Chinese)
doi: 10.12382/bgxb.2022.0002
|
[117] |
ZHU W C, WANG Y H. Effect of hydrogen flow rate and particle diameter on coal-hydrogen-air rotating detonation engines[J]. International Journal of Hydrogen Energy, 2022, 47(2): 1328-1342.
|
[118] |
祝文超, 王健平, 王宇辉, 等. 空气流量对煤粉-空气两相旋转爆轰波的影响[J]. 煤炭学报, 2022, 47(10):3715-3728.
|
|
ZHU W C, WANG J P, WANG Y H, et al. Effect of the air mass flow rate on coal-air two-phase rotating detonation waves[J]. Journal of China Coal Society, 2022, 47(10):3715-3728. (in Chinese)
|
[119] |
AHMED K A. Advanced cost-effective coal-fired rotating detonation combustor for high efficiency power generation[R]. Orlando,FL, US: University of Central Florida, 2021.
|
[120] |
SHI J T, ZHANG P K, XU Y, et al. Effects of dilute coal char particle suspensions on propagating methane detonation wave[J]. Combustion and Flame, 2023, 249: 112618.
|
[121] |
RAMAN V, PRAKASH S, GAMBA M. Nonidealities in rotating detonation engines[J]. Annual Review of Fluid Mechanics, 2023, 55: 639-674.
|
[122] |
苏晓杰, 续晗, 翁春生, 等. 粉末爆轰发动机的粉末燃料供应特性研究[J]. 推进技术, 2022, 43(10):418-426.
|
|
SU X J, XU H, WENG C S, et al. Characteristics of powder fuel supply for powder detonation engine[J]. Journal of Propulsion Technology, 2022, 43(10):418-426. (in Chinese)
|
[123] |
TULIS A J. Flowability techniques in the processing of powdered explosives, propellants, and pyrotechnics[J]. Journal of Hazardous Materials, 1980, 4(1):3-10.
|
[124] |
赵明皓, 王可, 王致程, 等. 燃烧室构型对旋转爆震波传播特性的影响[J]. 航空学报, 2022, 43(5): 125372.
|
|
ZHAO M H, WANG K, WANG Z C, et al. Effect of combustor configurations on propagation characteristics of rotating detonation waves[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5): 125372. (in Chinese)
|
[125] |
HUAN X, SAFTA C, SARGSYAN K, et al. Global sensitivity analysis and estimation of model error, toward uncertainty qua.pngication in scramjet computations[J]. AIAA Journal, 2018, 56(3): 1170-1184.
|
[126] |
梁霄, 陈江涛, 王瑞利. 高维参数不确定爆轰的不确定度量化[J]. 兵工学报, 2020, 41(4):692-701.
doi: 10.3969/j.issn.1000-1093.2020.04.008
|
|
LIANG X, CHEN J T, WANG R L. Uncertainty qua.pngication of detonation with high-dimensional parameter uncertainty[J]. Acta Armamentarii, 2020, 41(4):692-701. (in Chinese)
doi: 10.3969/j.issn.1000-1093.2020.04.008
|
[127] |
梁霄, 王瑞利. 爆轰流体力学模型敏感度分析与模型确认[J]. 物理学报, 2017, 66(11):270-279.
|
|
LIANG X, WANG R L. Sensitivity analysis and validation of detonation computational fluid dynamics model[J]. Acta Physica Sinica, 2017, 66(11):270-279. (in Chinese)
|
[128] |
席剑飞, 刘建忠, 汪洋, 等. 不同包覆剂对硼颗粒点火燃烧的影响[J]. 固体火箭技术, 2013, 36(5):654-659.
|
|
XI J F, LIU J Z, WANG Y, et al. Effects of coating agents on the ignition and combustion of boron particles[J]. Journal of Solid Rocket Technology, 2013,(5):654-659. (in Chinese)
|
[129] |
刘龙. 镁硼混合粉末燃料冲压发动机点火自维持燃烧特性研究[D]. 长沙: 国防科学技术大学, 2014.
|
|
LIU L. Investigations on the characteristics of ignition and self-maintenance combustion of powdered fuel ramjet charged with a mixture of magnesium and boron[D]. Changsha: National University of Defense Technology, 2014. (in Chinese)
|