Acta Armamentarii ›› 2014, Vol. 35 ›› Issue (10): 1696-1706.doi: 10.3969/j.issn.1000-1093.2014.10.026
• Comprehensive Review • Previous Articles Next Articles
CHEN Hui-yan, ZHANG Yu
Received:
2014-07-21
Revised:
2014-07-21
Online:
2014-11-28
Contact:
CHEN Hui-yan
E-mail:chen_h_y@263.net
CLC Number:
CHEN Hui-yan, ZHANG Yu. An Overview of Research on Military Unmanned Ground Vehicles[J]. Acta Armamentarii, 2014, 35(10): 1696-1706.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.co-journal.com/EN/10.3969/j.issn.1000-1093.2014.10.026
[1] 陈慧岩,熊光明,龚建伟,等.无人驾驶汽车概论[M].北京:北京理工大学出版社, 2014. CHEN Hui-yan, XIONG Guang-ming, GONG Jian-wei, et al. Introduction to self-driving car [M]. Beijing: Beijing Institute of Technology Press, 2014.(in Chinese) [2] Gage D W. UGV history 101: a brief history of unmanned ground vehicle (UGV) development efforts,ADA422845 [R]. San Diego:Naval Command Control and Ocean Surveillance Center, 1995. [3] Carlson J. Analysis of how mobile robots fail in the field [D]. Florida:University of South Florida, 2004. [4] Liu X, Dai B. The latest status and development trends of military unmanned ground vehicles[C]∥2013 Chinese Automation Congress. Changsha, Hunan:IEEE, 2013: 533-577. [5] Toscano M. Department of defense joint robotics program[C]∥AeroSense 2000. Orlando, FL, US:SPIE, 2000: 192-200. [6] Spofford J R, Rimey R D. Description of the UGV/Demo II system[C]∥Proceedings of Association for Unmanned Vehicle Systems International Conference. US:AUVSI,1997: 255-264. [7] Shoemaker C M, Bornstein J A. Overview of the Demo III UGV program[C]∥Robotic and Semi-Robotic Ground Vehicle Technology. US:SPIE, 1998: 202-211. [8] Krotkov E, Blitch J. The defense advanced research projects agency (DARPA) tactical mobile robotics program [J].The International Journal of Robotics Research, 1999, 18(7):769-776. [9] Fish S. Overview of UGCV and PerceptOR status[C]∥Unmanned Ground Vehicle Technology V. Orlando, Florida:SPIE, 2003: 336-339. [10] Van Fosson M H, Fish S. Role of robotics in ground combat of the future: UGCV, PreceptOR, and FCS[C]∥Unmanned Ground Vehicle Technology Ⅲ. Orlando, Florida:SPIE, 2001: 323-327. [11] Fish S. UGVs in future combat systems[C]∥Defense and Security Symposium. Orlando, Florida: SPIE, 2004: 288-291. [12] Jackel L D, Krotkov E, Perschbacher M, et al. The DARPA LAGR program: goals, challenges, methodology, and phase I results [J]. Journal of Field Robotics, 2006, 23(11/12):945-973. [13] Stentz A, Bares J, Pilarski T, et al. The crusher system for autonomous navigation[C]∥AUVSIs Unmanned Systems North America. Las Vegas:Association for Unmanned Vehicle Systems International-Unmanned Systems North America Conference, 2007:972-986. [14] 张浩杰. 不确定环境下基于启发式搜索的智能车辆路径规划研究[D].北京: 北京理工大学, 2012. ZHANG Hao-jie. Research on path planning for intelligent vehicle with heuristic search under uncertain environments [D]. Beijing: Beijing Institute of Technology, 2012. (in Chinese) [15] Buehler M, Iagnemma K, Singh S. The 2005 DARPA grand challenge [J]. Springer Tracts in Advanced Robotics, 2007, 36(5): 1-43. [16] The DARPA urban challenge: autonomous vehicles in city traffic [M]. Berlin Heidelberg:Springer International Publishing, 2009. [17] Wilson J R. Driving Force: DARPA’s Research efforts lead to advancements in robotics and autonomous navigation [M]∥DARPA: 50 years of bridging the cap. US:Faircount LLC Publishing, 2008: 45-57. [18] Bagnell J A, Bradley D, Silver D, et al. Learning for autonomous navigation [J]. IEEE Robotics & Automation Magazine, 2010, 17(2): 74-84. [19] Kerbrat A. Autonomous platform demonstrator,21395[R]. US:Army Tank Automotive Research Development and Engineering Center, 2010. [20] Zych N, Silver D, Stager D, et al. Achieving integrated convoys: cargo unmanned ground vehicle development and experimentation [C]∥SPIE Defense, Security, and Sensing. US:International Society for Optics and Photonics, 2013. [21] Theisen B. Autonomous Mobility Applique System (AMAS), 22434[R]. US:Army Tank Automotive Research Development and Engineering Center, 2011. [22] Satterfield B, Choxi H, Salamon A, et al. Advancing robotics: the urban challenge effect [J]. Journal of Aerospace Computing, Information, and Communication, 2008, 5(12): 530-542. [23] Czapla T, Wrona J. Technology development of military applications of unmanned ground vehicles [M]∥Nawrat A, Kus Z.Vision based systems for UAV applications. Germany:Springer International Publishing, 2013: 293-309. [24] Raibert M, Blankespoor K, Nelson G, et al. Bigdog, the rough-terrain quadruped robot [C]∥Proceedings of the 17th World Congress. Seoul:The International Federation of Automatic Control,2008: 10823-10825. [25] Playter R, Buehler M, Raibert M. BigDog [C]∥Unmanned Systems Technology VIII. US:International Society for Optics and Photonics, 2006. [26] Holste S T, Ciccimaro D A, Dudenhoeffer D D. Increasing the mobility of dismounted marines small unit mobility enhancement technologies: unmanned ground vehicles market survey,ADA513828[R]. San Diego:Space and Naval Warfare Systems Center Pacific, 2009. [27] ELI J, RAKúSOVá D. Trends of development in unmanned military motor vehicles [J]. University Review, 2013, 7(3):8-14. [28] Valois J S, Herman H, Bares J, et al. Remote operation of the Black Knight unmanned ground combat vehicle[C]∥SPIE Defense and Security Symposium. US:International Society for Optics and Photonics, 2008. [29] Czapla T, Wrona J. Technology development of military applications of unmanned ground vehicles [M]∥Nawrat A, Kus Z.Vision based systems for UAV applications. Germany:Springer International Publishing, 2013: 293-309. [30] Kilitci S, Buyruk M. An analysis of the best available unmanned ground vehicle in the current market with respect to the requirements of the turkish ministry of national defense,ADA555973[R]. Monterey:Naval Postgraduate School, 2011. [31] LaValle S M. Planning algorithms [M]. Cambridge:Cambridge University Press, 2006. [32] Kendoul F. Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems [J]. Journal of Field Robotics, 2012, 29(2):315-378. [33] Kobilarov M, Sukhatme G, Hyams J, et al. People tracking and following with mobile robot using an omnidirectional camera and a laser [C]∥2006 IEEE International Conference on Robotics and Automation. Orlando:IEEE, 2006: 557-562. [34] Nguyen-Huu P N, Titus J, Tilbury D, et al. Reliability and failure in unmanned ground vehicle (UGV), GRRC Technical Report 2009-01[R]. US:GRRC, 2009. [35] Appelqvist P, Knuuttila J, Ahtiainen J. Mechatronics design of an unmanned ground vehicle for military applications [J]. Mechatronic Systems Applications, 2011, 1(3):237-261. [36] Lalonde J F, Vandapel N, Huber D F, et al. Natural terrain classification using three-dimensional ladar data for ground robot mobility [J]. Journal of Field Robotics, 2006, 23(10):839-861. [37] Rankin A L, Huertas A, Matthies L H. Stereo-vision-based terrain mapping for off-road autonomous navigation[C]∥SPIE Defense, Security, and Sensing. US:International Society for Optics and Photonics, 2009. [38] Milella A, Reina G, Underwood J. A self-learning framework for statistical ground classification using radar and monocular vision [J]. Journal of Field Robotics, 2014, 31(4). doi: 10.1002/rob.21512. [39] Stentz A, Kelly A, Rander P, et al. Real-time, multi-perspective perception for unmanned ground vehicles[C]∥AUVSI Unmanned Systems Symposium. US:AUVSI, 2003. [40] Bagnell J A, Bradley D, Silver D, et al. Learning for autonomous navigation [J]. IEEE Robotics & Automation Magazine, 2010, 17(2): 74-84. [41] Peynot T, Underwood J, Scheding S. Towards reliable perception for unmanned ground vehicles in challenging conditions[C]∥2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. US:IEEE, 2009: 1170-1176. [42] Zhao Y, Li J, Li L, et al. Environmental perception and sensor data fusion for unmanned ground vehicle [J]. Mathematical Problems in Engineering, 2013, 2013(9):903951-903963. [43] Silver D, Stentz A. Monte Carlo localization and registration to prior data for outdoor navigation[C]∥2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). San Francisco: IEEE, 2011: 510-517. [44] Guo H D. Neural network aided kalman filtering for integrated GPS/INS Navigation System [J]. Telkomnika Indonesian Journal of Electrical Engineering, 2013, 11(3): 1221-1226. [45] Qian H, An D, Xia Q. IMM-UKF based land-vehicle navigation with low-cost GPS/INS[C]∥IEEE International Conference on Information and Automation (ICIA). US: IEEE, 2010: 2031-2035. [46] Urmson C, Anhalt J, Bagnell D, et al. Autonomous driving in urban environments: boss and the urban challenge [J]. Journal of Field Robotics, 2008, 25(8): 425-466. [47] Montemerlo M, Becker J, Bhat S, et al. Junior: the stanford entry in the urban challenge [J]. Journal of Field Robotics, 2008, 25(9): 569-597. [48] Leonard J, How J, Teller S, et al. A perception-driven autonomous urban vehicle [J]. Journal of Field Robotics, 2008, 25(10): 727-774. [49] Patz B J, Papelis Y, Pillat R, et al. A practical approach to robotic design for the DARPA urban challenge [J]. Journal of Field Robotics, 2008, 25(8): 528-566. [50] Ilyas M, Cho K, Park S, et al. Dependable navigation in GPS denied environment: a multi-sensor fusion technique[C]∥2013 44th International Symposium on Robotics. Seoul:ISR, 2013: 1-6. [51] Scaramuzza D, Fraundorfer F. Visual odometry (tutorial) [J]. IEEE Robotics & Automation Magazine, 2011, 18(4): 80-92. [52] Nourani-Vatani N, Roberts J, Srinivasan M V. Practical visual odometry for car-like vehicles[C]∥2009 IEEE International Conference on Robotics and Automation. US: IEEE, 2009: 3551-3557. [53] Howard A. Real-time stereo visual odometry for autonomous ground vehicles[C]∥2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. France: IEEE, 2008: 3946-3952. [54] Perlin V E, Johnson D B, Rohde M M, et al. Fusion of visual odometry and inertial data for enhanced real-time egomotion estimation[C]∥SPIE Defense, Security, and Sensing. Prague: International Society for Optics and Photonics, 2011: 80450K-80450K-12. [55] Thrun S, Burgard W, Fox D. Probabilistic robotics [M]. Massachusetts:MIT press, 2005. [56] Chekhlov D, Pupilli M, Mayol-Cuevas W, et al. Real-time and robust monocular SLAM using predictive multi-resolution descriptors [M]∥Bebis G, Molineros J, Theisel H,et al.Advances in visual computing. Berlin Heidelberg:Springer International Publishing, 2006: 276-285. [57] Thrun S, Liu Y, Koller D, et al. Simultaneous localization and mapping with sparse extended information filters [J]. The International Journal of Robotics Research, 2004, 23(7/8): 693-716. [58] Grisetti G, Stachniss C, Burgard W. Improved techniques for grid mapping with rao-blackwellized particle filters [J]. IEEE Transactions on Robotics, 2007, 23(1): 34-46. [59] Durrant-Whyte H, Bailey T. Simultaneous localization and mapping: part Ⅰ[J]. IEEE Robotics & Automation Magazine, 2006, 13(2): 99-110. [60] Bailey T, Durrant-Whyte H. Simultaneous localization and mapping (SLAM): Part Ⅱ[J]. IEEE Robotics & Automation Magazine, 2006, 13(3): 108-117. [61] Moosmann F, Stiller C. Velodyne slam [C]∥2011 IEEE Intelligent Vehicles Symposium (Ⅳ).Spain: IEEE, 2011: 393-398. [62] Cho K, Baeg S H, Park S. Natural terrain detection and SLAM using LIDAR for an UGV [M]∥Lee S, Yoon K J, Lee J .Frontiers of intelligent autonomous systems. Berlin Heidelberg: Springer, 2013: 263-275. [63] Tamjidi A, Ye C. A pose estimation method for unmanned ground vehicles in GPS denied environments [C]∥SPIE defense, Security, and Sensing. USA:International Society for Optics and Photonics, 2012: 83871K-83871K-12. [64] Su K J, Dong Z D, Huang Z. Novel SLAM algorithm for UGVs based on unscented Kalman filtering [C]∥2012 IEEE International Conference on Computer Science and Automation Engineering (CSAE). Zhangjiajie: IEEE, 2012. [65] Principles of robot motion: theory, algorithms, and implementation [M]. Massachusetts: MIT press, 2005. [66] Petti S, Fraichard T. Safe motion planning in dynamic environments[C]∥2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton: IEEE, 2005: 2210-2215. [67] Fox D, Burgard W, Thrun S. The dynamic window approach to collision avoidance [J]. IEEE Robotics & Automation Magazine, 1997, 4(1): 23-33. [68] Fiorini P, Shiller Z. Motion planning in dynamic environments using velocity obstacles [J]. The International Journal of Robotics Research, 1998, 17(7): 760-772. [69] Cowlagi R V, Tsiotras P. Hierarchical motion planning with dynamical feasibility guarantees for mobile robotic vehicles [J]. IEEE Transactions on Robotics, 2012, 28(2): 379-395. [70] Ferguson D, Howard T M, Likhachev M. Motion planning in urban environments [J]. Journal of Field Robotics, 2008, 25(11/12): 939-960. [71] Dubins L E. On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents [J]. American Journal of Mathematics, 1957, 79(3): 497-516. [72] Reeds J, Shepp L. Optimal paths for a car that goes both forwards and backwards [J]. Pacific Journal of Mathematics, 1990, 145(2): 367-393. [73] Pivtoraiko M, Kelly A. Kinodynamic motion planning with state lattice motion primitives[C]∥2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). San Francisco: IEEE, 2011: 2172-2179. [74] Dijkstra E W. A note on two problems in connexion with graphs [J]. Numerische mathematik, 1959, 1(1): 269-271. [75] Hart P E, Nilsson N J, Raphael B. A formal basis for the heuristic determination of minimum cost paths [J]. IEEE Transactions on Systems Science and Cybernetics, 1968, 4(2): 100-107. [76] Stentz A. The focussed D* algorithm for real-time replanning [C]∥1995 International Joint Conferences on Artificial Intelligence. Montreal: IJCAI, 1995, 95: 1652-1659. [77] Likhachev M, Ferguson D I, Gordon G J, et al. Anytime dynamic A*: an anytime, re-planning algorithm [C]∥2005 International Conference on Automated Planning and Scheduling. Monterey: ICAPS, 2005: 262-271. [78] Likhachev M, Ferguson D. Planning long dynamically feasible maneuvers for autonomous vehicles [J]. The International Journal of Robotics Research, 2009, 28(8): 933-945. [79] Komoriya K, Tanie K. Trajectory design and control of a wheel-type mobile robot using B-spline curve [C]∥The Autonomous Mobile Robots and Its Applications, IROS'89. Tsukuba: IEEE, 1989: 398-405. [80] Takahashi A, Hongo T, Ninomiya Y, et al. Local path planning and motion control for Agv in positioning[C]∥The Autonomous Mobile Robots and Its Applications, IROS'89. Tsukuba:IEEE, 1989: 392-397. [81] Kanayama Y, Hartman B I. Smooth local path planning for autonomous vehicles [M]∥Cox I J, Wilfong G T, Lozano-Perez T.Autonomous robot vehicles. New York:Springer, 1990:62-67. [82] Kelly A, Nagy B. Reactive nonholonomic trajectory generation via parametric optimal control [J]. The International Journal of Robotics Research, 2003, 22(7-8): 583-601. [83] Delsart V, Fraichard T, Martinez L. Real-time trajectory generation for car-like vehicles navigating dynamic environments [C]∥2009 IEEE International Conference on Robotics and Automation. Kobe: IEEE, 2009: 3401-3406. [84] Kuwata Y, Fiore G A, Teo J, et al. Motion planning for urban driving using RRT [C]∥2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. France: IEEE, 2008: 1681-1686. [85] Karaman S, Walter M R, Perez A, et al. Anytime motion planning using the RRT* [C]∥2011 IEEE International Conference on Robotics and Automation. Shanghai: IEEE, 2011: 1478-1483. [86] Giesbrecht J. Global path planning for unmanned ground vehicles, ADA436274[R]. US: Defence Research And Development Suffield (Alberta), 2004. [87] Chen Q Y, Sun Z P, Liu D X, et al. Local path planning for an unmanned ground vehicle based on SVM [J]. International Journal of Advanced Robotic Systems, 2012, 9(246). doi: 10.5772/54130. [88] Leonard J, How J, Teller S, et al. A perception‐driven autonomous urban vehicle [J]. Journal of Field Robotics, 2008, 25(10): 727-774. [89] Bacha A, Bauman C, Faruque R, et al. Odin: Team victortango's entry in the DARPA Urban Challenge [J]. Journal of Field Robotics, 2008, 25(8): 467-492. [90] Coulter R C. Implementation of the pure pursuit path tracking algorithm, ADA255524[R]. Pittsburgh: Carnegie Mellon University, the Robotics Institute, 1992. [91] Kelly A. A feed-forward control approach to the local navigation problem for autonomous vehicles [M].Pittsburgh: Carnegie Mellon University, the Robotics Institute, 1994. [92] Urmson C, Ragusa C, Ray D, et al. A robust approach to high‐speed navigation for unrehearsed desert terrain [J]. Journal of Field Robotics, 2006, 23(8):467-508. [93] Thrun S, Montemerlo M, Dahlkamp H, et al. Stanley: the robot that won the DARPA grand challenge [J]. Journal of Field Robotics, 2006, 23(9): 661-692. [94] Snider J M. Automatic steering methods for autonomous automobile path tracking, CMU-RI-TR-09-08[R]. Pittsburgh: Carnegie Mellon University, the Robotics Institute, 2009. [95] Kritayakirana K, Gerdes J C. Using the centre of percussion to design a steering controller for an autonomous race car [J]. Vehicle System Dynamics, 2012, 50(S1):33-51. [96] Ziegler J, Bender P, Schreiber M, et al. Making bertha drive- an autonomous journey on a historic route [J]. IEEE Intelligent Transportation Systems Magazine, 2014, 6(2): 8-20. [97] Divelbiss A W, Wen J T. Trajectory tracking control of a car-trailer system [J]. Control Systems Technology, IEEE Transactions on, 1997, 5(3): 269-278. [98] Levinson J, Askeland J, Becker J, et al. Towards fully autonomous driving: Systems and algorithms[C]∥2011 IEEE Intelligent Vehicles Symposium (IV). Spain: IEEE, 2011: 163-168. [99] Falcone P, Borrelli F, Asgari J, et al. Predictive active steering control for autonomous vehicle systems [J]. IEEE Transactions on Control Systems Technology, 2007, 15(3): 566-580. [100] Yoon Y, Shin J, Kim H J, et al. Model-predictive active steering and obstacle avoidance for autonomous ground vehicles [J]. Control Engineering Practice, 2009, 17(7): 741-750. [101] Geiger A, Lauer M, Moosmann F, et al. Team AnnieWAY's entry to the 2011 grand cooperative driving challenge[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(3): 1008-1017. [102] Tran T H, Nguyen M T, Kwok N M, et al. Sliding Mode-PID approach for robust low-level control of a UGV[C]∥2006 IEEE International Conference on Automation Science and Engineering. Shanghai: IEEE, 2006: 672-677. [103] Ma Y, Xiang C, Zhu Q, et al. Design of fuzzy enhanced hierarchical motion stabilizing controller of unmanned ground vehicle in three dimensional space [J]. International Journal of Computational Intelligence Systems, 2011, 4(6):1168-1178. [104] Xu X, He H G. Neural-network-based learning control for the high-speed path tracking of unmanned ground vehicles[C]∥Proceedings of the International Conference on Machine Learning and Cybernetics, 2002. Beijing: IEEE, 2002: 1652-1656. |
[1] | ZHOU Qiu, ZHOU Yue, SUN Hongming, GUO Wei, WU Kai, LAN Yanjun. Path Planning and Tracking Control Method of Deep-Sea Landing Vehicle [J]. Acta Armamentarii, 2023, 44(1): 298-306. |
[2] | KONG Guojie, FENG Shi, YU Huilong, JU Zhiyang, GONG Jianwei. A Review on Cooperative Motion Planning of Unmanned Vehicles [J]. Acta Armamentarii, 2023, 44(1): 11-26. |
[3] | MAO Ming, WANG Jian-bing. Research on Influence of Breakwater on Hydrodynamic Characterisitics of Displacement Amphibious Vehicles [J]. Acta Armamentarii, 2016, 37(9): 1553-1560. |
[4] | GAO Jun-qiang, TANG Xia-qing, HUANG Xiang-yuan, CHENG Xu-wei. FEA Method for Analysis of SINS Error Caused by Vibration Isolation System [J]. Acta Armamentarii, 2016, 37(9): 1570-1577. |
[5] | NI Yan-jie, CHENG Nian-kai, JIN Yong, YANG Chun-xia, LI Hai-yuan, LI Bao-ming. Numerical Simulation on Pressure Wave in a 30mm Electrothermal-chemical Gun [J]. Acta Armamentarii, 2016, 37(9): 1578-1584. |
[6] | LU Ye, ZHOU Ke-dong, HE Lei, LI Jun-song, HUANG Xue-ying. Research on Influence of Muzzle Brake Efficiency on a New Large Caliber Machine Gun Based on Floating Principle [J]. Acta Armamentarii, 2016, 37(9): 1585-1591. |
[7] | LIU Guo-qing, XU Cheng. The Study of Bullet-Barrel Matching Design Method of High Precision Sniper Rifle [J]. Acta Armamentarii, 2016, 37(9): 1592-1598. |
[8] | LI Zhen-xiao, ZHANG Ya-zhou, NI Yan-Jie, LI Bao-ming. Analysis on the Influence of Turn-off Characteristics of Thyristor on Augmented Railgun [J]. Acta Armamentarii, 2016, 37(9): 1599-1605. |
[9] | HU Ming, WANG Jiong, WU Xiao-lang. Estimation Method for Storage Life of Magnetorheological Fluid Fuze Arming Device [J]. Acta Armamentarii, 2016, 37(9): 1606-1611. |
[10] | ZHOU Peng, CAO Cong-yong, DONG Hao. Analysis of Interior Ballistic Characteristics and Muzzle Flow Field of High-pressure Gas Launcher [J]. Acta Armamentarii, 2016, 37(9): 1612-1616. |
[11] | ZHAO Xue-wei, YU Yong-gang, MANG Shan-shan. Influence of Injection Pressure Change on Expansion Characteristics of Pulsed Plasma Jet [J]. Acta Armamentarii, 2016, 37(9): 1617-1623. |
[12] | LIN Xiang-yang, LI Han, ZHENG Wen-fang, PAN Ren-ming. Formation Mechanism of Pore Structure of Ball Propellant with Micro-pores Made by Double Emulsion Method [J]. Acta Armamentarii, 2016, 37(9): 1633-1638. |
[13] | CUI Yun-xiao, CHEN Peng-wan, David A. Cendón, DAI Kai-da, ZHONG Fang-ping. Numerical Simulation of Dynamic Brazilian Test of Polymer Bonded Explosive Simulant Based on Cohesive Crack Model [J]. Acta Armamentarii, 2016, 37(9): 1639-1645. |
[14] | CAO Hao-zhe, WU Yan-xuan, ZHOU Feng, WANG Zheng-jie. Research on Containment Control of Second-order Nonlinear Multi-agent with Collision Avoidance Mechanism [J]. Acta Armamentarii, 2016, 37(9): 1646-1654. |
[15] | LOU Li, FAN Jian-hua, XU Cheng. Research on Topologically Optimized Anti-jamming Technology for Tactical MANETs [J]. Acta Armamentarii, 2016, 37(9): 1662-1669. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||