Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (1): 241-252.doi: 10.12382/bgxb.2022.0523
Previous Articles Next Articles
LIU Qian1, ZHANG Zhuxin2,*(), ZHAO Dingxuan1, WANG Hui1, QIN Zhanyong1
Received:
2022-06-13
Online:
2024-01-30
Contact:
ZHANG Zhuxin
CLC Number:
LIU Qian, ZHANG Zhuxin, ZHAO Dingxuan, WANG Hui, QIN Zhanyong. Electric Landing Assist Device of Shipborne Helicopters and Its Key Characteristics Analysis[J]. Acta Armamentarii, 2024, 45(1): 241-252.
Add to citation manager EndNote|Ris|BibTeX
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
θ/(°) | 10 | g/(m·s-2) | 9.8 |
aX/(m·s-2) | 1 | aZ/(m·s-2) | 0.5 |
MH/kg | 6 000 | f | 0.02 |
L/m | 7 | LH/m | 0.9 |
ρ/(kg·m-3) | 1.29 | vW/(m·s-1) | 12 |
AXCW | 20 | LW/m | 0.9 |
LE/m | 0.9 | Lbc/m | 3.5 |
Table 1 Motion parameters under level-3 sea conditions
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
θ/(°) | 10 | g/(m·s-2) | 9.8 |
aX/(m·s-2) | 1 | aZ/(m·s-2) | 0.5 |
MH/kg | 6 000 | f | 0.02 |
L/m | 7 | LH/m | 0.9 |
ρ/(kg·m-3) | 1.29 | vW/(m·s-1) | 12 |
AXCW | 20 | LW/m | 0.9 |
LE/m | 0.9 | Lbc/m | 3.5 |
名称 | 符号 | 特征方程 | 键合图模型 |
---|---|---|---|
阻性元件 | R | e(t)=Rf(t) | |
容性元件 | C | e(t)= | |
惯性元件 | I | f(t)= | |
流源 | Sf | f(t)=Sf | |
势源 | Se | e(t)=Se | |
转换器 | TF | | |
1结 | 1 | | |
0结 | 0 | |
Table 2 Characteristic equation and bond graph model
名称 | 符号 | 特征方程 | 键合图模型 |
---|---|---|---|
阻性元件 | R | e(t)=Rf(t) | |
容性元件 | C | e(t)= | |
惯性元件 | I | f(t)= | |
流源 | Sf | f(t)=Sf | |
势源 | Se | e(t)=Se | |
转换器 | TF | | |
1结 | 1 | | |
0结 | 0 | |
传动部件 | 参数 | 数值 |
---|---|---|
电机 | 输出转速Sf/(rad·s-1) | |
转动转化为平动TF/(rad·m-1) | 20.61 | |
同步带传动 | 同步带刚度C/(m·N-1) | 1.92×10-7 |
平动转化为转动TF/(m·rad-1) | 48.52×10-3 | |
减速机输入端 | 转动惯量I/(kg·m2) | 4.25×10-3 |
转动阻尼R/(N·m·s) | 4.7×10-2 | |
减速机 | 减速比TF | 40 |
丝杆刚度C/(rad·N-1·m-1) | 7.8×10-6 | |
减速机输出端 | 转动惯量I/(kg·m2) | 22.95×10-3 |
转动阻尼R/(N·m·s) | 5.3×10-3 | |
动滑轮 | 质量I/kg | 35.75 |
转动转化为平动TF/(rad·m-1) | 628.93 | |
链传动 | 链条刚度C/(m·N-1) | 1.49×10-9 |
倍行程效应TF | 0.5 | |
机械爪 | 摩擦阻尼R/N | 30 |
质量I/kg | 44.328 | |
直升机 | 阻力Se/N | 2.1×104 |
质量I/kg | 6×103 |
Table 3 Parameters of transmission system for electric landing assist device
传动部件 | 参数 | 数值 |
---|---|---|
电机 | 输出转速Sf/(rad·s-1) | |
转动转化为平动TF/(rad·m-1) | 20.61 | |
同步带传动 | 同步带刚度C/(m·N-1) | 1.92×10-7 |
平动转化为转动TF/(m·rad-1) | 48.52×10-3 | |
减速机输入端 | 转动惯量I/(kg·m2) | 4.25×10-3 |
转动阻尼R/(N·m·s) | 4.7×10-2 | |
减速机 | 减速比TF | 40 |
丝杆刚度C/(rad·N-1·m-1) | 7.8×10-6 | |
减速机输出端 | 转动惯量I/(kg·m2) | 22.95×10-3 |
转动阻尼R/(N·m·s) | 5.3×10-3 | |
动滑轮 | 质量I/kg | 35.75 |
转动转化为平动TF/(rad·m-1) | 628.93 | |
链传动 | 链条刚度C/(m·N-1) | 1.49×10-9 |
倍行程效应TF | 0.5 | |
机械爪 | 摩擦阻尼R/N | 30 |
质量I/kg | 44.328 | |
直升机 | 阻力Se/N | 2.1×104 |
质量I/kg | 6×103 |
传动部件 | 参数 | 数值 |
---|---|---|
电机 | 输出转速Sf/(rad·s-1) | |
齿轮泵 | 转动转化为流量TF/(rad·m-3) | 2.09×106 |
内部泄漏R/(m3·s-1·Pa-1) | 3.21×10-12 | |
液压管路 | 内部流阻R/(Pa·s·m-3 | 0.91×1011 |
单向阀 | 内部流阻R/(Pa·s·m-3) | 3.76×109 |
换向阀 | 内部流阻R/(Pa·s·m-3) | 1.03×1010 |
内部泄漏R/(m3·s-1·Pa-1) | 3.3×10-13 | |
液压油刚度C/(m3·Pa-1) | 2.51×10-14 | |
内部泄漏R/(m3·s-1·Pa-1) | 1.04×10-12 | |
液压缸 | 流量转化为平动TF/(m2·s-1) | 5.02×10-3 |
质量I/kg | 46.32 | |
摩擦阻尼R/N | 12.6 | |
动滑轮 | 质量I/kg | 35.75 |
摩擦阻尼R/N | 25.0 | |
链传动 | 链条刚度C/(m·N-1) | 1.49×10-8 |
倍行程效应TF | 0.5 | |
机械爪 | 摩擦阻尼R/N | 30 |
质量I/kg | 44.328 | |
直升机 | 负载运动阻力Se/N | 2.1×104 |
负载质量I/kg | 6×103 |
Table 4 Parameters of transmission system for hydraulic landing assist device
传动部件 | 参数 | 数值 |
---|---|---|
电机 | 输出转速Sf/(rad·s-1) | |
齿轮泵 | 转动转化为流量TF/(rad·m-3) | 2.09×106 |
内部泄漏R/(m3·s-1·Pa-1) | 3.21×10-12 | |
液压管路 | 内部流阻R/(Pa·s·m-3 | 0.91×1011 |
单向阀 | 内部流阻R/(Pa·s·m-3) | 3.76×109 |
换向阀 | 内部流阻R/(Pa·s·m-3) | 1.03×1010 |
内部泄漏R/(m3·s-1·Pa-1) | 3.3×10-13 | |
液压油刚度C/(m3·Pa-1) | 2.51×10-14 | |
内部泄漏R/(m3·s-1·Pa-1) | 1.04×10-12 | |
液压缸 | 流量转化为平动TF/(m2·s-1) | 5.02×10-3 |
质量I/kg | 46.32 | |
摩擦阻尼R/N | 12.6 | |
动滑轮 | 质量I/kg | 35.75 |
摩擦阻尼R/N | 25.0 | |
链传动 | 链条刚度C/(m·N-1) | 1.49×10-8 |
倍行程效应TF | 0.5 | |
机械爪 | 摩擦阻尼R/N | 30 |
质量I/kg | 44.328 | |
直升机 | 负载运动阻力Se/N | 2.1×104 |
负载质量I/kg | 6×103 |
[1] |
doi: 10.11648/j.ijmea.20210901.14 URL |
[2] |
doi: 10.1080/19942060.2020.1786461 URL |
[3] |
王波, 江鹏远, 张洪亮, 等. 高海况舰上起降风险及应对措施[J]. 船舶工程, 2021, 43(增刊2):9-13.
|
|
|
[4] |
李博, 王孝通, 徐晓刚, 等. 基于计算机视觉的舰载直升机助降技术研究[J]. 兵工学报, 2007, 28(3): 370-373.
|
|
|
[5] |
伍恒, 谭大力, 李启军, 等. 国外舰载直升机助降与牵引装备综合性能对比分析[J]. 舰船科学技术, 2021, 43(23):185-189.
|
|
|
[6] |
doi: 10.3390/app12052603 URL |
[7] |
doi: 10.3390/s22041514 URL |
[8] |
doi: 10.1016/j.ast.2019.105675 URL |
[9] |
doi: 10.1007/s11071-020-05915-w |
[10] |
doi: 10.1016/j.oceaneng.2020.108428 URL |
[11] |
doi: 10.1080/19942060.2021.1999330 URL |
[12] |
doi: 10.1016/j.ast.2020.106175 URL |
[13] |
李友毅, 张志春, 熊壮, 等. 舰载直升机着舰碰撞建模方法[J]. 系统工程与电子技术, 2015, 37(7): 1691-1696.
|
doi: 10.3969/j.issn.1001-506X.2015.07.34 |
|
[14] |
王倩, 赵丁选, 魏海龙, 等. 复杂海况下舰载机着舰的动力学研究[J]. 东北大学学报(自然科学版), 2017, 38(11):1595-1600.
doi: 10.12068/j.issn.1005-3026.2017.11.016 |
|
|
[15] |
王倩, 赵丁选, 赵颖, 等. 舰载直升机复杂舰面上的动力学分析[J]. 吉林大学学报(工学版), 2017, 47(4): 1109-1113.
|
|
|
[16] |
赵丁选, 王倩, 张祝新. 基于层次分析法的可拓学理论对舰载直升机可靠性的评估[J]. 吉林大学学报(工学版), 2016, 46(5): 1528-1531.
|
|
|
[17] |
doi: 10.1002/rob.v23:02 URL |
[18] |
doi: 10.2514/1.13865 URL |
[19] |
张宏军, 蔡斌, 张春燕, 等. 一种海上作业直升机的安全快速回收及放飞系统及方法:中国,CN109398735A[P]. 2019-03-01.
|
|
|
[20] |
梁涛, 张晓刚, 权龙, 等. 泵阀双源协同驱动多执行器系统特性研究[J]. 西安交通大学学报, 2022, 56(3): 1-11.
|
|
|
[21] |
doi: 10.1016/j.energy.2020.119291 URL |
[22] |
齐昕, 苏涛, 周珂, 等. 交流电机模型预测控制策略发展概述[J]. 中国电机工程学报, 2021, 41(18):6408-6419.
|
|
|
[23] |
贺虎成, 孙磊, 张玉峰, 等. 基于矢量控制的异步电机自抗扰控制[J]. 电机与控制学报, 2019, 23(4): 120-125.
|
|
|
[24] |
吕英俊, 刘卓伟, 苏涛, 等. 异步电机无传感器矢量控制极低速与零速性能研究[J]. 中国电机工程学报, 2019, 39(20): 6095-6103,6190.
|
|
|
[25] |
|
[26] |
|
[27] |
doi: 10.1016/j.energy.2020.118767 URL |
[28] |
doi: 10.3390/mi13010130 URL |
[29] |
|
[30] |
doi: 10.1016/j.apenergy.2019.114131 URL |
[31] |
doi: 10.1109/TITS.6979 URL |
[32] |
doi: 10.1007/s12206-016-0817-y URL |
[33] |
doi: 10.1016/j.ijhydene.2021.05.016 URL |
[34] |
doi: 10.3390/en14020380 URL |
[1] | DU Wanshan, ZHOU Zhou, BAI Yu, ZHANG Zhilin, WANG Keilei. Study on Multibody Dynamics Modeling and Flight Dynamic Characteristics of Combined Aircraft [J]. Acta Armamentarii, 2023, 44(8): 2245-2262. |
[2] | GAO Pu, LI Hongcai, LIU Hui, MENG Jieke. Analysis on Dynamic Characteristics of External Oil Pipe System of Integrated Transmission Device in Armoured Vehicle [J]. Acta Armamentarii, 2023, 44(11): 3447-3454. |
[3] | REN Hui-lan, LI Wei, LIU Xiao-jun, CHEN Zhi-you. Reaction Behaviors of Al/PTFE Materials Enhanced by W Particles [J]. Acta Armamentarii, 2016, 37(5): 872-878. |
[4] | LYU Sheng-tao, LIU Rong-zhong, GUO Rui, MA Xiao-dong. Research on Aerodynamic Characteristics of Terminal Sensitive Projectile with S-C Shaped Elastic Wings [J]. Acta Armamentarii, 2016, 37(5): 785-790. |
[5] | LEI Juan-mian, NIU Jian-ping, WANG Suo-zhu, ZHOU Qi. Numerical Simulation about the Effect of Initial Separation Condition on Safety of Aerial Bomb Separated from an Aircraft [J]. Acta Armamentarii, 2016, 37(2): 357-366. |
[6] | MA Xiao-dong, GUO Rui, LIU Rong-zhong, LYU Sheng-tao. Analysis of Inflation and Aerodynamic Characteristics of Vortex Ring Parachute [J]. Acta Armamentarii, 2015, 36(8): 1411-1416. |
[7] | QIAN Li-zhi, NING Quan-li, LI Jun, JIANG Bin-an. Dynamic Characteristics Simulation of Projectile-borne Device Based on Split Hopkinson Pressure Bar [J]. Acta Armamentarii, 2015, 36(10): 1875-1881. |
[8] | LI Fu-yuan, ZHANG Yu-wen, DANG Jian-jun, TENG Peng-hua. Research on Hydrodynamic Characteristics of Conical Cavitator [J]. Acta Armamentarii, 2014, 35(7): 1040-1044. |
[9] | Aeronautics and Astronautics Engineering College, Air Force Engineering University, Xi'an 710038, Shaanxi, China. Numerical Research on Aerodynamic Characteristics of Cavity with Store at Supersonic Speeds [J]. Acta Armamentarii, 2013, 34(8): 975-980. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||