欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2024, Vol. 45 ›› Issue (10): 3415-3429.doi: 10.12382/bgxb.2024.0007

• • 上一篇    下一篇

不同入水攻角下高速射弹的流固耦合特性

刘想炎1,2, 于楠2, 黄振贵1,*(), 陈志华1, 马长胜3, 邱荣贤3   

  1. 1 南京理工大学 瞬态物理全国重点实验室, 江苏 南京 210094
    2 空中交通管理系统全国重点实验室, 江苏 南京 210014
    3 中国人民解放军陆军装备部 驻南京地区军事代表局, 江苏 南京 210007
  • 收稿日期:2024-01-02 上线日期:2024-03-18
  • 通讯作者:
  • 基金资助:
    国家自然科学青年基金项目(12002165); 空中交通管理系统全国重点实验室开放课题项目(SKLATM202105); 江苏省研究生科研与实践创新计划项目(KYCX24_0714)

Characteristics of Fluid-structure Interaction of High-speed Projectile at Different Angles of Attack during Water Entry

LIU Xiangyan1,2, YU Nan2, HUANG Zhengui1,*(), CHEN Zhihua1, MA Changsheng3, QIU Rongxian3   

  1. 1 National Key Laboratory of Transient Physics, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
    2 State Key Laboratory of Air Traffic Management System, Nanjing 210014, Jiangsu, China
    3 Military Representative Bureau in Nanjing, General Armament Department of PLA, Nanjing 210007, Jiangsu, China
  • Received:2024-01-02 Online:2024-03-18

摘要:

高速入水时弹体结构响应(变形)大小关系射弹能否安全入水。当前,基于刚体模型的高速入水数值计算方法无法深入揭示初始扰动影响下射弹入水过程中复杂多相流、水动力与弹体结构响应等之间的相互耦合作用规律。为解决上述难题,基于流体力学和结构动力学,建立一种高速入水流固耦合数值计算方法,重点研究攻角对某型射弹高速入水过程的影响,分析攻角影响下空泡演化、冲击载荷、弹体运动与结构变形的相互耦合作用机理。研究结果表明:随攻角增大,弹体下表面与空泡壁面逐渐产生强烈撞击,迫使空泡壁面弯曲;对该型射弹,当攻角>3°时,射弹会因尾翼拍击液面出现第2次载荷峰值,此时射弹因沾湿产生弯矩,迫使射弹出现塑性应变,随入水深度增加,射弹形成明显的尾翼弯折,因沾湿产生的表面压力最大值超过10MPa;攻角为2°时,射弹虽因弹头尾翼同时受力产生弯矩,但内部应力未超过弹体材料的屈服强度,未出现塑性变形,因此,对该型射弹,其安全入水攻角≤2°。

关键词: 流固耦合, 高速斜入水, 攻角, 超空泡, 结构变形, 冲击载荷

Abstract:

The magnitude of structural response (deformation) of a projectile during high-speed water entry plays a crucial role in determining the projectile’s safe entry into the water. At present, the numerical computational methods based on rigid-body models fail to fully elucidate the intricate coupled interactions among multiphase flow, hydrodynamics and projectile structural responses during the water entry process under the influence of the initial disturbances. To address this challenge, a fluid-structure interaction numerical computational method for high-speed water entry is developed based on the principles of fluid mechanics and structural dynamics. This method is specifically tailored to investigate the influence of the angle of attack on the high-speed water entry process of a specific projectile, focusing on analyzing the interaction among supercavity evolution, impact loads, projectile motion and structural deformations under varying angles of attack. The research findings revealed the following key insights: As the angle of attack increases, a pronounced impact occurs between the lower surface of projectile and the supercavity wall, resulting in the curvature of supercavity wall; For the specific projectile considered in the study, a secondary peak load occurs as the projectile tail strikes the liquid surface at an angle of attack of more than 3°, inducing the bending moments from wetting and the plastic deformation of projectile, ultimately leading to significant bending of the tail, with maximum wetting-induced surface pressure exceeding 10MPa; The stress of the projectile remains below the yield strength of its material although the projectile undergoes the bending moments as a result of the concurrent loading on both the projectile head and tail at an angle of attack of 2°, thereby precluding plastic deformation. Consequently, for the specific projectile, an angle of attack of 2° or less is recommended for safe water entry.

Key words: fluid-structure interaction, high-speed oblique water entry, angle of attack, supercavity, structural deformation, impact load

中图分类号: