欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2023, Vol. 44 ›› Issue (5): 1422-1430.doi: 10.12382/bgxb.2022.0069

• • 上一篇    下一篇

基于强化学习的对空雷达抗干扰波形设计

郑泽新, 李伟*(), 邹鲲, 李艳福   

  1. 空军工程大学 信息与导航学院, 陕西 西安 710077
  • 收稿日期:2022-01-28 上线日期:2022-07-21
  • 通讯作者:
    *邮箱: E-mail:
  • 基金资助:
    国家自然科学基金项目(62271500); 陕西省自然科学基金项目(2020JM-343)

Anti-jamming Waveform Design of Ground-based Air Surveillance Radar Based on Reinforcement Learning

ZHENG Zexin, LI Wei*(), ZOU Kun, LI Yanfu   

  1. Information and Navigation School, Air Force Engineering University,Xi’an 710077, Shaanxi, China
  • Received:2022-01-28 Online:2022-07-21

摘要:

被探测目标的电子战能力严重影响对空雷达的检测和识别性能。针对对空雷达抗干扰问题,提出基于强化学习的抗干扰波形设计方法。从博弈角度利用强化学习方法建立雷达和目标干扰间动态对抗模型,计算博弈各方状态、动作价值,利用策略迭代法生成最优策略,基于相位迭代法合成时域波形。仿真结果表明:使用新方法设计的雷达发射信号时,与线性调频信号、捷变频信号相比,信干噪比分别提高了6.39dB和1.12dB;信号总功率为11W时,与捷变频信号相比,目标检测概率提升了5%,可在低功率实现抗干扰的同时提升雷达信号抗截获性能。

关键词: 对空雷达, 波形设计, 强化学习, 抗干扰

Abstract:

The electronic warfare capability of the detected target seriously affects the detection and identification performance of the ground-based air surveillance radar. To address the anti-jamming problem of the air surveillance radar, an anti-jamming waveform design method based on reinforcement learning is proposed. From the perspective of game theory, the reinforcement learning method is used to establish a dynamic confrontation model between radar and target jamming, calculate the state and action value of all parties in the game. The strategy iteration method is employed to generate the optimal strategy, and the time domain waveform is synthesized based on the phase iteration method. The simulation results shows that: when using the radar transmitted signal designed by the proposed method, compared with linear frequency-modulated signals and frequency-agile signals, the signal-to-interference-noise ratio is increased by 6.39dB and 1.12dB respectively; when the total signal power is 11W, compared with the frequency-agile signal, the target detection probability is increased by 5%, meaning that the designed signal can improve the anti-interception performance of radar signals while achieving anti-jamming at low power.

Key words: ground-based air surveillance radar, waveform design, reinforcement learning, anti-jamming